Verify whether the interconnection in the circuit in Figure P2.1 in the textbook is valid or not. Calculate the power developed by the current sources if the circuit is valid. Explain the reason if the interconnection in the circuit is not valid.
Answer to Problem 1P
The interconnection in the given circuit is valid and the power developed by the current sources is 1700 W.
Explanation of Solution
Given data:
Refer to Figure P2.1 in the textbook for required data.
Formula used:
Write the expression for power developed by the source (voltage or current) as follows:
Here,
Calculation:
From the given circuit, it is clear that, the voltage drop across the 10 A current source is 100 V and the voltage drop from the negative terminal of the 40 V voltage source to the bottom terminal of the 5 A current source must be 100 V.
In order to maintain the voltage drop of 100 V from the negative terminal of the 40 V voltage source to the bottom terminal of the 5 A current source the voltage drop across 5 A current source must be 140 V.
From the analysis, redraw the circuit as shown in Figure 1.
All the sources in the given circuit are independent sources. The independent voltage source can carry any current that required by the connection and the independent current source can support any voltage that required by the connection.
From the analysis, the voltage drop across the sources is satisfied. Therefore, the interconnection in the given circuit is valid.
Rewrite the expression in Equation (1) to find the power developed by the 10 A current source as follows:
From Figure 1, current 10 A enters from the negative terminal of 100 V. Therefore, the values of
The negative sign indicates the delivered power by the source. Therefore, the power developed by the 10 A current source is 1000 W.
Rewrite the expression in Equation (1) to find the power developed by the 5 A current source as follows:
From Figure 1, current 5 A enters from the negative terminal of 140 V. Therefore, the values of
As the negative sign indicates the delivered power by the source, the power developed by the 5 A current source 700 W.
Write the expression for power developed by the both current sources as follows:
Substitute 1000 W for
Conclusion:
Thus, the interconnection in the given circuit is valid and the power developed by the current sources is 1700 W.
Want to see more full solutions like this?
Chapter 2 Solutions
Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
- Do by pen and paper not using AIarrow_forwardWhat is the zero potential surface of the 2-wire transmission line in the figure shown?arrow_forwardB) Use the results of the autocorrelation function R(T) of the waveform x(t) = A cos(2 fot+o) to find the autocorrelation function R(T) and the average normalized power Py of the waveform y(t) = 5 cos 5t + 10 cos 10t. 12+13 marksarrow_forward
- Q2: Obtain the y parameters of the two-port network in the figure below 10 50 50 ww 0.5V2 20 V2 01arrow_forwardProblem 3 In a broadcasting communication system, the transmitter power Pt is 40kW, the channel attenuation is 80dB, and the noise power spectral density S, (f) is 10-10 W/Hz. The message signal has a bandwidth W of 104 Hz. a. Find the output SNR (2) if the modulation is DSB-SC AM b. Find the output SNR if the modulation is SSB AM Narrow_forwardA random experiment consists of drawing a ball from a box that contains 4 red balls (numbered 1,2,3,4) and 3 black balls numbered (1,2,3). State what outcomes are contained in the following events: a. E₁ = The event that the only balls with an even number are selected b. E2 = The event that only red balls with a number greater than 1 are selected c. E3 The event that only balls with a number less than 3 are selected For reference, an example of a response for such questions is as follows: = Q: E6 The event that only balls with an odd number are selected A: E6 = {R1, R3, B1, B3}. Here R₁ = event that Red ball with number 1 is selected, B3 = Black ball with number 3 is selected.. and so on..arrow_forward
- Problem 2 The noise voltage in an electric circuit is modeled as a Gaussian random variable X with a mean equal to zero (m = 0) and a variance equal to 108 (σ² = 10-8). a. What is the probability that the value of the noise exceeds 10-4? P(X > 10-4) = ? b. What is the probability that the noise value is between -2 × 10-4 and 10-4? P(-2 × 10 4 x < 10-4) = ?arrow_forwardPlease solve it without artificial intelligence on paper and penarrow_forwardQ3: Obtain the h parameters of the two-port in the figure below 300 Ω www 10 Ω ww ww 100 Ω 50 Ω www 10Varrow_forward
- line code QPSK modulated signal. By The information in an analog waveform whose maximum frequency f8000 Hz is The quantization distortion nnst not sisted in, a 10 levd PAM exceed +1% of the peak-to-peak analog signal.arrow_forwardQ4: Obtain the ABCD parameters for the network in the figure shown below 60 ΙΩ www V₁ 20 +1 ΔΩ ww 5Vxarrow_forward1) What is the minimum number of bits per sample that should be used in this PAM transmission system? 2) What is the minimum required sampling rate, and what is the resulting bit rate? 3) What is the 16-ary PAM symbol transmission rate?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,