Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 19Q
In each of the following pairs, which is the more massive: a relaxed or compressed spring, a charged or uncharged capacitor, or a piston-cylinder when closed or open?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An open system is one in which.......
O Mass crosses the boundary but not the
energy
Neither mass nor energy crosses the
boundaries of the system
O Mass does not cross boundaries of the
system, though energy may do so
O Both energy and mass cross the boundaries
of the system
In each of the following pairs, which is the more massive: a relaxed or compressed spring, a charged or uncharged capacitor, or a piston-cylinder when closed or open?
(e) Explain why can we write the following equation for large r
d F., 2µE
dr2
F = 0
(21)
Before we solve for F we to utilize the fact if E > 0 then the particles
will behave as if they are free (free meaning independent) (there will be
too much energy for the particles to stay together if E > 0); however we
want to interpret a situation where the particles interact with each other,
hence we are only interested in E 0, then we can
write E = -E' (ensuring E is negative because E' is positive) Now we
will rewrite equation (21) as
dF 2µE'
-F
(22)
%3D
dr2
Note that 4, E' and h are all positive constants.
Chapter 2 Solutions
Modern Physics for Scientists and Engineers
Ch. 2 - Michelson used the motion of the Earth around the...Ch. 2 - If you wanted to set out today to find the effects...Ch. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Devise a system for you and three colleagues, at...Ch. 2 - In the experiment to verify time dilation by...
Ch. 2 - Can you think of an experiment to verify length...Ch. 2 - Would it be easier to perform the muon decay...Ch. 2 - On a spacetime diagram, can events above t = 0 but...Ch. 2 - Prob. 14QCh. 2 - What would be a suitable name for events connected...Ch. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Explain how in the twin paradox, we might arrange...Ch. 2 - In each of the following pairs, which is the more...Ch. 2 - Prob. 20QCh. 2 - Prob. 21QCh. 2 - A salesman driving a very fast car was arrested...Ch. 2 - A salesman driving a very fast car was arrested...Ch. 2 - Show that the form of Newtons second law is...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A swimmer wants to swim straight across a river...Ch. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prove that the constancy of the speed of light...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Two events occur in an inertial system K as...Ch. 2 - Is there a frame K in which the two events...Ch. 2 - Prob. 15PCh. 2 - An event occurs in system K at x = 2 m, y = 3.5 m,...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - A rocket ship carrying passengers blasts off to go...Ch. 2 - Prob. 20PCh. 2 - Particle physicists use particle track detectors...Ch. 2 - The Apollo astronauts returned from the moon under...Ch. 2 - A clock in a spaceship is observed to run at a...Ch. 2 - A spaceship of length 40 m at rest is observed to...Ch. 2 - Prob. 25PCh. 2 - A mechanism on Earth used to shoot down...Ch. 2 - Prob. 27PCh. 2 - Imagine that in another universe the speed of...Ch. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - A proton and an antiproton are moving toward each...Ch. 2 - Imagine the speed of light in another universe to...Ch. 2 - Prob. 34PCh. 2 - Three galaxies are aligned along an axis in the...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Consider a reference system placed at the U.S....Ch. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Use the Lorentz transformation to prove that s2 =...Ch. 2 - Prob. 42PCh. 2 - Prove that for a spacelike interval, two events...Ch. 2 - Given two events, (x1, t1) and (x2, t2), use a...Ch. 2 - Prob. 45PCh. 2 - Consider a fixed and a moving system with their...Ch. 2 - Prob. 47PCh. 2 - An astronaut is said to have tried to get out of a...Ch. 2 - Prob. 49PCh. 2 - Do the complete derivation for Equation (2.33)...Ch. 2 - A spacecraft traveling out of the solar system at...Ch. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Newtons second law is given by F=dp/dt. If the...Ch. 2 - Use the result of the previous problem to show...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - A particle having a speed of 0.92c has a momentum...Ch. 2 - A particle initially has a speed of 0.5c. At what...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - What is the speed of an electron when its kinetic...Ch. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Calculate the energy needed to accelerate a...Ch. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - The Large Hadron Collider at Europes CERN facility...Ch. 2 - What is the kinetic energy of (a) an electron...Ch. 2 - A muon has a mass of 106 MeV/c2. Calculate the...Ch. 2 - Prob. 84PCh. 2 - The reaction 2H + 3H → n + 4He is one of the...Ch. 2 - Instead of one positive charge outside a...Ch. 2 - Prob. 87PCh. 2 - Show that the following form of Newton’s second...Ch. 2 - Prob. 89PCh. 2 - For the twins Frank and Mary described in Section...Ch. 2 - Frank and Mary are twins. Mary jumps on a...Ch. 2 - A police radar gun operates at a frequency of 10.5...Ch. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - A proton moves with a speed of 0.90c. Find the...Ch. 2 - A high-speed K0 meson is traveling at a speed of...Ch. 2 - Prob. 97PCh. 2 - The International Space Federation constructs a...Ch. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - A spaceship is coming directly toward you while...Ch. 2 - Quasars are among the most distant objects in the...Ch. 2 - One possible decay mode of the neutral kaon is K0...Ch. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Small differences in the wavelengths in the sun’s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two electrons are initially separated by 5.0 X 10^-8 m. When they are both released, they fly apart. How fast would they be flying apart when they are separated by a large distance?arrow_forwardI Review I Constants During most of its lifetime, a star maintains an equilibrium size in which the inward force of gravity on each atom is balanced by an outward pressure force due to the heat of the nuclear reactions in the core. But after all the hydrogen "fuel" is consumed by nuclear fusion, the pressure force drops and the star undergoes a gravitational collapse until it becomes a neutron star. In a neutron star, the electrons and protons of the atoms are squeezed together by gravity until they fuse into neutrons. Neutron stars spin very rapidly and emit intense pulses of radio and light waves, one pulse per rotation. These "pulsing stars" were discovered in the 1960s and are called pulsars. Part A = 2.0 x 1030 kg) and size (R 3.5 x 10° m) of our sun rotates once every 35.0 days. After undergoing gravitational collapse, A star with the mass (M the star forms a pulsar that is observed by astronomers to emit radio pulses every 0.100 s. By treating the neutron star as a solid sphere,…arrow_forwardThe escape velocity from a massive object is the speed needed to reach an infinite distance from it and have just slowed to a stop, that is, to have just enough kinetic energy to climb out of the gravitational potential well and have none left. You can find the escape velocity by equating the total kinetic and gravitational potential energy to zero E=12mv2esc−GmM/r=0E=12mvesc2−GmM/r=0 vesc=2GM/r−−−−−−√vesc=2GM/r where GG is Newton's constant of gravitation, MM is the mass of the object from which the escape is happening, and rr is its radius. This is physics you have seen in the first part of the course, and you should be able to use it to find an escape velocity from any planet or satellite. For the Earth, for example the escape velocity is about 11.2 km/s, and for the Moon it is 2.38 km/s. A very important point about escape velocity: it does not depend on what is escaping. A spaceship or a molecule must have this velocity or more away from the center of the planet to be free…arrow_forward
- Two 0.60-kgkg basketballs, each with a radius of 19 cmcm , are just touching a) How much energy is required to change the separation between the centers of the basketballs to 1.0 mm ? (Ignore any other gravitational interactions.) b) How much energy is required to change the separation between the centers of the basketballs to 13 mm ? (Ignore any other gravitational interactions.)arrow_forward"A very heavy object moving with velocity v collides head-on with a very light object moving with velocity -v. The collision is elastic, and there is no friction. The heavy object barely slows down. What is the speed of the light object after the collision?" O nearly v O nearly 2v O nearly 3v O nearly infinitearrow_forwardPlz helparrow_forward
- where 1 eV = 1.602 × 10-19 J. Express the neutron’s kinetic energy in electron volts. b) In nuclear physics, it is convenient to express the energy of particles in electron volts (eV), 2) A neutron with a mass of 1.7 × 10-27 kg passes between two points in a detector 6 m apart in a time interval of 1.8 x 10-4 s. In the tendon at this pon a) Find the kinetic energy of the neutron in joulesarrow_forwardB6arrow_forward9. For each of the following systems, determine whether it is: (i) controllable, uncontrollable but stabilizable, or uncontrollable and unstabilizable, and (ii) observable, unobservable but detectable, or unobservable and undetectable. In addition, obtain the transfer function and determine whether there are pole-zero cancellations. -3 2] (a) i = y = [4 -2] r. U, -4 3 [1 1 (b) i = [2 u, y = [-1 3] a. 3 (c) i = u, y = [-3 1] r. -2 0arrow_forward
- Multiple Choice Questions (MCQ’s): 1. The dimensions of gravitational constant are: (2) [M*LT*] (b) [M"LT*] (e) [M'L°T*] (a) [M"L?T*] 2. If V is the gravitational potential on the surface of a thin spherical shell, then the potential at the centre of the shell is : (a) Zero (b) V (c) V/2 (d) infinite 3. The ratio of the gravitational potential at the surface of a solid sphere to that at the centre is (a) :1 (b) 1:2 (c) 2:3 (d) 3:2 4. The ratio of the gravitational potentials at the centre and on the surface of a solid sphere is: (a) 히 (c) :1 (b) 1:1 (d) 2:1 5. The value of gravitational potentials energy is: (a) Always positive (c) positive or negative 6. The nature of gravitational field is: (a) Conservative field (c) pseudo field 7. The gravitational potential on the earth's surface is: (a) - 6.2 X 10' joule/kg (b) always negative (d) always zero (b) non conservative field (d) solenoidal field. (b) 11.2 X 10' joule/kgarrow_forwardTwo protons (each with mass mp = 1.67 x 10-27 kg) are initially moving with equal speeds in opposite directions. They continue to exist after a head-on collision that also produces a neutral pion of mass mp = 2.40 x 10-28 kg (Fig.). If all three particles are at rest after the collision, find the initial speed of the protons. Energy is conserved in the collision.arrow_forwardSuppose two identical particles, each with identical masses and kinetic energies collide head-on. What is the kinetic energy of the other particle as measured from a reference frame where one particle is stationary?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY