
Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 17Q
To determine
Slope of a real worldline is greater than one in Fig 2.22.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s
the circumference of the ripple is 20 m. Calculate the velocity of the wave.
10. Imagine you have a system in which you have 54 grams of ice. You can melt this
ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly
into a balloon held at a pressure of 0.250 bar. Here are some facts about water you
may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0
C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the
enthalpy of fusion of solid water is 333.55 J/gram.
A. How much energy does the ice absorb as heat when it melts?
B. How much work is involved in melting the ice?
C. What is the total change in energy for melting the ice?
D. What is the enthalpy change for melting the ice?
E. What is the entropy change for melting the ice?
F. What is the change in Helmholtz energy for melting the ice?
G. What is the change in Gibbs energy for melting the ice?
In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Chapter 2 Solutions
Modern Physics for Scientists and Engineers
Ch. 2 - Michelson used the motion of the Earth around the...Ch. 2 - If you wanted to set out today to find the effects...Ch. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Devise a system for you and three colleagues, at...Ch. 2 - In the experiment to verify time dilation by...
Ch. 2 - Can you think of an experiment to verify length...Ch. 2 - Would it be easier to perform the muon decay...Ch. 2 - On a spacetime diagram, can events above t = 0 but...Ch. 2 - Prob. 14QCh. 2 - What would be a suitable name for events connected...Ch. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Explain how in the twin paradox, we might arrange...Ch. 2 - In each of the following pairs, which is the more...Ch. 2 - Prob. 20QCh. 2 - Prob. 21QCh. 2 - A salesman driving a very fast car was arrested...Ch. 2 - A salesman driving a very fast car was arrested...Ch. 2 - Show that the form of Newtons second law is...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A swimmer wants to swim straight across a river...Ch. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prove that the constancy of the speed of light...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Two events occur in an inertial system K as...Ch. 2 - Is there a frame K in which the two events...Ch. 2 - Prob. 15PCh. 2 - An event occurs in system K at x = 2 m, y = 3.5 m,...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - A rocket ship carrying passengers blasts off to go...Ch. 2 - Prob. 20PCh. 2 - Particle physicists use particle track detectors...Ch. 2 - The Apollo astronauts returned from the moon under...Ch. 2 - A clock in a spaceship is observed to run at a...Ch. 2 - A spaceship of length 40 m at rest is observed to...Ch. 2 - Prob. 25PCh. 2 - A mechanism on Earth used to shoot down...Ch. 2 - Prob. 27PCh. 2 - Imagine that in another universe the speed of...Ch. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - A proton and an antiproton are moving toward each...Ch. 2 - Imagine the speed of light in another universe to...Ch. 2 - Prob. 34PCh. 2 - Three galaxies are aligned along an axis in the...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Consider a reference system placed at the U.S....Ch. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Use the Lorentz transformation to prove that s2 =...Ch. 2 - Prob. 42PCh. 2 - Prove that for a spacelike interval, two events...Ch. 2 - Given two events, (x1, t1) and (x2, t2), use a...Ch. 2 - Prob. 45PCh. 2 - Consider a fixed and a moving system with their...Ch. 2 - Prob. 47PCh. 2 - An astronaut is said to have tried to get out of a...Ch. 2 - Prob. 49PCh. 2 - Do the complete derivation for Equation (2.33)...Ch. 2 - A spacecraft traveling out of the solar system at...Ch. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Newtons second law is given by F=dp/dt. If the...Ch. 2 - Use the result of the previous problem to show...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - A particle having a speed of 0.92c has a momentum...Ch. 2 - A particle initially has a speed of 0.5c. At what...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - What is the speed of an electron when its kinetic...Ch. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Calculate the energy needed to accelerate a...Ch. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - The Large Hadron Collider at Europes CERN facility...Ch. 2 - What is the kinetic energy of (a) an electron...Ch. 2 - A muon has a mass of 106 MeV/c2. Calculate the...Ch. 2 - Prob. 84PCh. 2 - The reaction 2H + 3H → n + 4He is one of the...Ch. 2 - Instead of one positive charge outside a...Ch. 2 - Prob. 87PCh. 2 - Show that the following form of Newton’s second...Ch. 2 - Prob. 89PCh. 2 - For the twins Frank and Mary described in Section...Ch. 2 - Frank and Mary are twins. Mary jumps on a...Ch. 2 - A police radar gun operates at a frequency of 10.5...Ch. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - A proton moves with a speed of 0.90c. Find the...Ch. 2 - A high-speed K0 meson is traveling at a speed of...Ch. 2 - Prob. 97PCh. 2 - The International Space Federation constructs a...Ch. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - A spaceship is coming directly toward you while...Ch. 2 - Quasars are among the most distant objects in the...Ch. 2 - One possible decay mode of the neutral kaon is K0...Ch. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Small differences in the wavelengths in the sun’s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Now add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.arrow_forwardFor a tornadoes and hurricanes, which of the following is most critical? an alert a watch a warning a predictionarrow_forwardWhen a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward
- 1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forwardA 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forwardA bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forward
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill