Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 54P
To determine
The time sodium streetlamps would take to become invisible from spaceship.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
length
period
Vlength
2. Turn your intercept into a statement.
Hint: "When the is 0, the is ."
cm
Vcm
Vx
BIU EE EE O O
1.
19
0.8625
4.358898943540674
24
0.9667
4.898979485566356
29
1.1083
5.385164807134504
34
1.1958
5.830951894845301
3. Does your intercept make sense? How do you know?
BIU E=E E
39
1.2292
6.244997998398398
44
1.3625
6.6332495807108
49
1.4083
7
54
1.4542
7.3484692283495345
4. A represents the slope of your line of best fit. Pay attention to the number and the unit.
Mass Curve:
58
1.5375
7.615773105863909
7.937253933193772
A: 1.378
LO
63
1.6792
8.246211251235321
RMSE : 4.029 g
11
68
1.6875
Take a look at the box below your graph to find the slope of your line. What is the slope of
your line?
period vs Vlength
BIU E= EE
1.7
1.6
1.5
1.4
5. Turn your slope into a "for every" statement.
Hint: The goes up for every 1
1.3
of ."
BIU E= EE
1.2
1.1
1
0.9
6. Write out the equation for your line of best fit.
Hint: Make sure you have:
4.5
5
5.5
6
6.5
7
7.5
8
• Variables that…
The speed of light is exactly e = 299792458 m - s1. (Also written 299, 792, 458 m - s-1 or 2.99792458 × 10°m -
s1. This is exact because it is the definition of the metre.)
It takes light 8.3 minutes to get from the sun to the earth. Assuming that the earth's orbit is exactly circular (an
approximation) and that its speed is constant, and using the data in this question, calculate the speed of the earth
in its orbit around the sun in km · hr. Practise writing your conversions clearly using the 'multiply by 1' technique.
Speed of the earth =_ km per hour. Write your answer in standard (not scientific) notation, i.e. without using
exponents, and without using commas. However, remember to use the correct number of significant figures. (Hint:
which is the least precise of the given data?) Do not include units.
A beam of light is moving directly along the spaceship, but through an
old-fashioned fiber optic cable. The speed of light in the cable is 0.6 times the
speed of light in a vacuum. The spaceship is moving at 0.8 times the speed of
light. What speed do you observe from the ground?
Chapter 2 Solutions
Modern Physics for Scientists and Engineers
Ch. 2 - Michelson used the motion of the Earth around the...Ch. 2 - If you wanted to set out today to find the effects...Ch. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5QCh. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Devise a system for you and three colleagues, at...Ch. 2 - In the experiment to verify time dilation by...
Ch. 2 - Can you think of an experiment to verify length...Ch. 2 - Would it be easier to perform the muon decay...Ch. 2 - On a spacetime diagram, can events above t = 0 but...Ch. 2 - Prob. 14QCh. 2 - What would be a suitable name for events connected...Ch. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Explain how in the twin paradox, we might arrange...Ch. 2 - In each of the following pairs, which is the more...Ch. 2 - Prob. 20QCh. 2 - Prob. 21QCh. 2 - A salesman driving a very fast car was arrested...Ch. 2 - A salesman driving a very fast car was arrested...Ch. 2 - Show that the form of Newtons second law is...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - A swimmer wants to swim straight across a river...Ch. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prove that the constancy of the speed of light...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Two events occur in an inertial system K as...Ch. 2 - Is there a frame K in which the two events...Ch. 2 - Prob. 15PCh. 2 - An event occurs in system K at x = 2 m, y = 3.5 m,...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - A rocket ship carrying passengers blasts off to go...Ch. 2 - Prob. 20PCh. 2 - Particle physicists use particle track detectors...Ch. 2 - The Apollo astronauts returned from the moon under...Ch. 2 - A clock in a spaceship is observed to run at a...Ch. 2 - A spaceship of length 40 m at rest is observed to...Ch. 2 - Prob. 25PCh. 2 - A mechanism on Earth used to shoot down...Ch. 2 - Prob. 27PCh. 2 - Imagine that in another universe the speed of...Ch. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - A proton and an antiproton are moving toward each...Ch. 2 - Imagine the speed of light in another universe to...Ch. 2 - Prob. 34PCh. 2 - Three galaxies are aligned along an axis in the...Ch. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Consider a reference system placed at the U.S....Ch. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Use the Lorentz transformation to prove that s2 =...Ch. 2 - Prob. 42PCh. 2 - Prove that for a spacelike interval, two events...Ch. 2 - Given two events, (x1, t1) and (x2, t2), use a...Ch. 2 - Prob. 45PCh. 2 - Consider a fixed and a moving system with their...Ch. 2 - Prob. 47PCh. 2 - An astronaut is said to have tried to get out of a...Ch. 2 - Prob. 49PCh. 2 - Do the complete derivation for Equation (2.33)...Ch. 2 - A spacecraft traveling out of the solar system at...Ch. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Newtons second law is given by F=dp/dt. If the...Ch. 2 - Use the result of the previous problem to show...Ch. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - A particle having a speed of 0.92c has a momentum...Ch. 2 - A particle initially has a speed of 0.5c. At what...Ch. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - What is the speed of an electron when its kinetic...Ch. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Calculate the energy needed to accelerate a...Ch. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - The Large Hadron Collider at Europes CERN facility...Ch. 2 - What is the kinetic energy of (a) an electron...Ch. 2 - A muon has a mass of 106 MeV/c2. Calculate the...Ch. 2 - Prob. 84PCh. 2 - The reaction 2H + 3H → n + 4He is one of the...Ch. 2 - Instead of one positive charge outside a...Ch. 2 - Prob. 87PCh. 2 - Show that the following form of Newton’s second...Ch. 2 - Prob. 89PCh. 2 - For the twins Frank and Mary described in Section...Ch. 2 - Frank and Mary are twins. Mary jumps on a...Ch. 2 - A police radar gun operates at a frequency of 10.5...Ch. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - A proton moves with a speed of 0.90c. Find the...Ch. 2 - A high-speed K0 meson is traveling at a speed of...Ch. 2 - Prob. 97PCh. 2 - The International Space Federation constructs a...Ch. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - A spaceship is coming directly toward you while...Ch. 2 - Quasars are among the most distant objects in the...Ch. 2 - One possible decay mode of the neutral kaon is K0...Ch. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Small differences in the wavelengths in the sun’s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Car A is moving east at 52.7 kph while Car B is moving in the direction of N 45° E. For a passenger in Car A, B appears to be moving away in a direction of N 30° W. Solve for the velocity, in kph, that B appears to the passengers in A. Round your answer to 2 decimal places.arrow_forwardWhile passing between Earth and the Moon, a spacecraft is momentarily located on the line connecting the centers of the two bodies and is at a distance of d = 101 km from a radio antenna on the surface of Earth. The distance from the antenna to the moon is denoted by dm. Part (a) Recall that the speed of light is 3.0 × 108 m/s. How long, in seconds, does it take for a signal from the spacecraft to arrive at the antenna on Earth? Part (b) Scientists on Earth send a command to the spacecraft, which immediately sends back a receipt confirmation signal. How long, in seconds, after the scientists send the command does it take before they learn it was received? Part (c) Scientists bounce a laser beam off the Moon and measure the two-way travel time to be 2.42 s. How far away is the Moon in meters?arrow_forwardYou are on an interstellar mission from the Earth to the 8.7 light-years distant star Sirius. Your spaceship can travel with 70% the speed of light and has a cylindrical shape with a diameter of 6 m at the front surface and a length of 25 m. You have to cross the interstellar medium with anthe approximated density of 1 hydrogen atom/m3Because you are moving at an enormous speed, your mission from the previous part will be influenced by the effects of time dilation described by special relativity: Your spaceshiplaunches in June 2020 and returns back to Earth directly after arriving at Sirius.(a) How many years will have passed from your perspective?(b) At which Earth date (year and month) will you arrive back to Earth?arrow_forward
- In 2019, SCUBA divers from Mexico explores the Atlantic Ocean (64lb/f) and finds a circular clock thoughtto be theancient remnants of the legendary Atlntis. If the clock measures 1.3 ft. in diameter and depth is measured to be 1250 ft. from the surface to the center of this clock, what force is experienced by the object? C. 16900 b: D. 106185.8317 lb: A. 251327.4123 lb: B. 53092.9159 lb;arrow_forwardThe Global Positioning System (GPS) relies on very accurate atomic clocks aboard a network of 24 satellites, each of which orbits the Earth in 12 hours. To provide a resolution better than 1 meter on Earth, the clocks must not gain or lose more than 3 ns in 12 hours. That is, the clocks must be accurate to 3 x 10-⁹ s/(12 hr) = 7 × 10-14 The satellites move at a speed v = 3.9 km/s in circular orbits. Is it necessary for GPS receivers on Earth to account for special relativistic effects?arrow_forwardHow long should it take the voices of astronauts on the Moon to reach the Earth? Assume that the only significant time is the transit time from the Earth to the Moon, at the speed of light. Suppose that the astronaut on the surface of the Moon, the receiver on the surface of the Earth, and the centers of the Earth and the Moon are aligned. The distance between the centers of the Earth and the Moon is 384×103km, the radius of the Earth is 6.38×103km, the radius of the Moon is 1.74×103km.arrow_forward
- HW 7arrow_forwardGalaxies are moving apart due to the expansion of the universe. Suppose another galaxy-approximated as a sphere-is moving away from us at 3.00 x 106 m/s. How will an Earth-bound observer with access to extremely high resolution equipment perceive the other galaxy's shape? It will appear as a sphere to the Earth-bound observer with its dimensions unchanged. a It will appear as a sphere to the Earth-bound observer, with all dimensions stretched b proportionally to the relativistic factor. It will be stretched in the direction of travel away from Earth proportionally to the relativistic factor. It will be compressed in the direction of travel away from Earth proportionally to the d relativistic factor.arrow_forwardYou are an engineer assigned to build a spaceship. The length and diameter of your spaceship as measured by an astronaut on board are 80.0 m and 25.0 m, respectively. The spaceship moves at 70% the speed of light relative to you on Earth in a direction parallel to its length. What are its dimensions as measured by you on Earth?arrow_forward
- Review Conceptual Example 3 for information pertinent to this problem. When we look at a particular star, we are seeing it as it was 380 years ago. How far away from us (in meters) is the star? Take a year to be 365.25 days.arrow_forwardConsider a pulse of laser light aimed at the moon that bounces back to Earth. The distance between Earth and the moon is 3.8x108m. What is the round trip time for the light travel? (ans. 0.395s) The nearest Star beyond the sun is Alpha Centauri, which is 4.2x1016m away. If we were to recieve a radio message from this star today, how long ago(in years) was it sent? (ans. 4.44 years) Show workarrow_forwardA person on earth communicating via radio transmission with an astronaut on the moon asks a question. At the time of transmission, the moon is 3.843.84 × 10105 km from the earth, and the speed of radio waves is 3.003.00 × 10108 m/s. How long must the person on earth wait for a response if the astronaut answers 5.005.00 s after the message is received?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning