Concept explainers
(a)
Calculate the design wind load, base shear, and overturning moment.
(a)
Answer to Problem 18P
The resultant force acting on roof slab is
The resultant force acting on second floor is
The seismic base shear is
The overturning moment is
Explanation of Solution
Given information:
The importance factor (I) is 1.15.
The value of
The mean roof height is 30 ft.
The height of the single floor (h) is 15 ft.
The basic wind speed is
The exposure is D.
Calculation:
Consider the exposure of the D.
Refer Table 2.9, “Adjustment factor
The value of
Calculate the design wind pressure as shown below.
Refer Table 2.8 “Simplified horizontal design wind pressure
Calculate the design wind pressures for zone A and zone C as shown in Table 1.
Zone | ||
A | 12.8 | 24.44 |
C | 8.5 | 16.23 |
Calculate the resultant force for each level as shown below.
The distance at which the load acts for zone A is
The distance at which the load acts for zone C is
Calculate the resultant force acting on roof slab as shown below.
Hence, the resultant force acting on roof slab
Calculate the resultant force acting on second floor as shown below.
Hence, the resultant force acting on second floor
Calculate the base shear force as shown below.
Hence, the seismic base shear is
Calculate the overturning moment as shown below.
Therefore, the overturning moment is
(b)
Calculate the base shear and overturning moment using the equivalent lateral force procedure.
(b)
Answer to Problem 18P
The seismic base shear is
The overturning moment is
Explanation of Solution
Given information:
The average weight of the floor and roof is
The value of
The value of
The value of R is 8.
The importance factor (I) is 1.5.
Calculation:
The value of
Calculate the fundamental period as shown below.
Calculate the total dead load of the building as shown below.
Calculate the magnitude of the base shear as shown below.
Calculate the magnitude of the maximum base shear as shown below.
Calculate the magnitude of the minimum base shear as shown below.
Hence, take the value of
The value of k is 1 for
Calculate the seismic base shear to each floor level as shown below.
Provide the calculated the seismic base shear at each floor levels as shown in Table 1.
Floor | Weight | Height of the floor | |||
Roof | 900 | 30 | 27, 000 | 0.667 | 39.5 |
2nd | 900 | 15 | 13,500 | 0.333 | 19.7 |
Sum | 1,800 | 40,500 | 59.2 |
Refer to Table 1:
The seismic base shear is
Hence, the seismic base shear is
Calculate the overturning moment as shown below.
Therefore, the overturning moment is
(c)
Provide the design strength of the building govern the wind force of seismic force.
(c)
Answer to Problem 18P
The design strength of the building governed by the seismic force.
Explanation of Solution
Given information:
The average weight of the floor and roof is
The value of
The value of
The value of R is 8.
The importance factor (I) is 1.5.
Calculation:
Refer to part (a).
The seismic base shear and overturning moment due to wind force.
The seismic base shear is
The overturning moment is
Refer to part (b).
The seismic base shear and overturning moment due to seismic force.
The seismic base shear is
The overturning moment is
The seismic base shear and overturning moment due to seismic force is greater than to compared with the seismic base shear and overturning moment due to seismic force.
Hence, the design strength of the building governed by the seismic force.
Want to see more full solutions like this?
Chapter 2 Solutions
Fundamentals Of Structural Analysis:
- Q1: Compute the missing measurement of the lines AB & CD (using trigonometric method), and the coordinates of closed loop traverse ABCD as shown in the figure below. C 20 (due N) N 73° 18' E B S 41° 12' E མམ་བ A (100, 100) D 60 (due W)arrow_forwardPlease solve all points with explanationarrow_forwardPlease solve with drawingarrow_forward
- Please provide a handwritten solution to the questionarrow_forwardName: Q.1 select the lightest W12 shape for column AB that support a service dead and live loads Po-150k and P-200k as shown in Figure. The beams and columns are oriented about the major axis and the columns are braced at top and mid-height using pinned end connections for out of plane buckling. ASTM A992 steel is used. Select the suitable answer below: I U B 8.00 All dimensions in feet 30.00 W18.76 8091 B Parrow_forward2) Determine volume of bioreactor SP 2nd order kinetics. V= ks2 Yieldsarrow_forward
- The question is in Turkish You need to explain the process in detailarrow_forwardQ3. Design by LRFD maximum size side SMAW fillet welds required to develop the loads Po= 7. kips and PL-60kips for an L6x4x1/2, using E70XX electrodes steel. The member is connected on the sides of the 6-in leg and is subject to alternating loads. Draw the layout of welding. Note: 1-5/8 in. 1. All Steel sections are A36 2. The loads effect through the angle center of gravity. L6x4x1/2 Angle C.G. Parrow_forwardDesign the size side SMAW fillet welds required to develop the loads PD= 7. kips and PL=60kips for an L6x4x1/2, using E70XX electrodes steel. The member is to be connected with side welds and a weld at the end of the Q2 angle to a 5/8- inch thickness gusset plate. Balance the fillet welds around the center of gravity of the angle as shown in Figure (2). Use A36 steel. Draw the layout of welding. t=5/8 in. L 6x4x1/2 Angle C.G. P4 Figure -2-arrow_forward
- 1. What is length of a curve if the design speed is 85mph. A grades of a road is 3% and -2% and has stopping sight distance is 820ft. Determine whether S<L or S>Larrow_forward3. A crest vertical curve joins a +3% and -4% grade. Design speed is 75 mph. Length = 2184.0 ft. Station at VPI is 325+ 55.00, elevation at VPI = 260 feet. Find elevations and station for VPC (BVC) and VPT (EVC). 4. On a 0.5-mile highway segment, if the speeds of these 8 vehicles are measured as 55, 45, 40, 50, 60, 65, 70 and 65mph, respectively, what is time mean speed? What is space mean speed. 5. An observer located at point X counted 6 vehicles passing through this point during a period of 45 seconds. What is the hourly flow rate based on the observation? Good Lucky DDA 0 IN INEERI Enginearrow_forward4. On a 0.5-mile highway segment, if the speeds of these 8 vehicles are measured as 55, 45, 40, 50, 60, 65, 70 and 65mph, respectively, what is time mean speed? What is space mean speed.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning