Absolute Java (6th Edition)
Absolute Java (6th Edition)
6th Edition
ISBN: 9780134041674
Author: Walter Savitch, Kenrick Mock
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 10PP

Write a program that inputs the name, quantity, and price of three items. The name may contain spaces. Output a bill with a tax rate of 6.25%. All prices should be output to two decimal places. The bill should be formatted in columns with 30 characters for the name, 10 characters for the quantity, 10 characters for the price, and 10 characters for the total. Sample input and output are shown as follows:

Input name of item 1: lollipops Input quantity of item 1: 10 Input price of item 1: 0 .50 Input name of item 2: diet soda Input quantity of item 2: 3 Input price of item 2: 1 .25 Input name of item 3: chocolate bar Input quantity of item 3: 20 Input price of item 3: 0 .75

Your bill: Item                    Quantity      Price        Total lollipops             10                0 .50         5 .00  diet soda             3                 1 .25          3 .75 chocolate bar      20                0 .75         15 .00 Subtotal                                                  23 .75 6.25 %  sales tax                                      1 .48 Total                                                       25 .23

Blurred answer
Students have asked these similar questions
using r language for integration theta = integral 0 to infinity (x^4)*e^(-x^2)/2 dx (1) use the density function of standard normal distribution N(0,1) f(x) = 1/sqrt(2pi) * e^(-x^2)/2 -infinity <x<infinity as importance function and obtain an estimate theta 1 for theta set m=100 for the estimate whatt is the estimate theta 1? (2)use the density function of gamma (r=5 λ=1/2)distribution f(x)=λ^r/Γ(r) x^(r-1)e^(-λx) x>=0 as importance function and obtain an estimate theta 2 for theta set m=1000 fir the estimate what is the estimate theta2? (3) use simulation (repeat 1000 times) to estimate the variance of the estimates theta1 and theta 2 which one has smaller variance?
using r language A continuous random variable X has density function f(x)=1/56(3x^2+4x^3+5x^4).0<=x<=2 (1) secify the density g of the random variable Y you find for the acceptance rejection method. (2) what is the value of c you choose to use for the acceptance rejection method (3) use the acceptance rejection method to generate a random sample of size 1000 from the distribution of X .graph the density histogram of the sample and compare it with the density function f(x)
using r language a continuous random variable X has density function f(x)=1/4x^3e^-(pi/2)^4,x>=0  derive the probability inverse transformation F^(-1)x where F(x) is the cdf of the random variable X

Chapter 2 Solutions

Absolute Java (6th Edition)

Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,
Constants, Variables, Data types, Keywords in C Programming Language Tutorial; Author: LearningLad;https://www.youtube.com/watch?v=d7tdL-ZEWdE;License: Standard YouTube License, CC-BY