VECTOR MECH. FOR EGR: STATS & DYNAM (LL
12th Edition
ISBN: 9781260663778
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 19.1, Problem 19.6P
(a)
To determine
The amplitude
(b)
To determine
The maximum velocity
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The period of vibration of the system shown is observed to be 0.6 s. After cylinder B has been removed, the period is observed to be 0.5 s. Determine (a) the weight of cylinder A(b) the constant of the spring.
A 6-kg uniform cylinder is assumed to roll without sliding on a horizontal surface and is attached by a pin at point C to the 4-kg horizontal bar AB. The bar is attached to two springs, each having a constant of k = 3.5 kN/m, as shown. Knowing that the coefficient of static friction between the cylinder and the surface is 0.5, determine the maximum amplitude of the motion of point C that is compatible with the assumption of rolling.
A 6-kg uniform cylinder can roll without sliding on a horizontal surface and is attached by a pin at point C to the 4-kg horizontal bar AB to the 4-kg horizontal bar k= 5 kN/m, as shown. Knowing that the bar is moved 12 mm to the right of the equilibrium position and released, determine (a) the period of vibration of the system, (b) the magnitude of the maximum velocity of bar AB.
Chapter 19 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - Prob. 19.6PCh. 19.1 - Prob. 19.7PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - Prob. 19.9PCh. 19.1 - Prob. 19.10P
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - A 5-kg collar C is released from rest in the...Ch. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - An 11-lb block is attached to the lower end of a...Ch. 19.1 - Block A has a mass m and is supported by the...Ch. 19.1 - A 13.6-kg block is supported by the spring...Ch. 19.1 - Prob. 19.21PCh. 19.1 - 19.21 and 19.22A 50-kg block is supported by the...Ch. 19.1 - Prob. 19.23PCh. 19.1 - The period of vibration of the system shown is...Ch. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - From mechanics of materials, it is known that for...Ch. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - If h = 700 mm and d = 500 mm and each spring has a...Ch. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Prob. 19.35PCh. 19.1 - Prob. 19.36PCh. 19.2 - The 9-kg uniform rod AB is attached to springs at...Ch. 19.2 - Prob. 19.38PCh. 19.2 - Prob. 19.39PCh. 19.2 - Prob. 19.40PCh. 19.2 - A 15-lb slender rod AB is riveted to a 12-lb...Ch. 19.2 - A 20-lb uniform cylinder can roll without sliding...Ch. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - A three-blade wind turbine used for research is...Ch. 19.2 - A connecting rod is supported by a knife-edge at...Ch. 19.2 - A semicircular hole is cut in a uniform square...Ch. 19.2 - A uniform disk of radius r = 250 mm is attached at...Ch. 19.2 - A small collar of mass 1 kg is rigidly attached to...Ch. 19.2 - Prob. 19.51PCh. 19.2 - Prob. 19.52PCh. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - The 8-kg uniform bar AB is hinged at C and is...Ch. 19.2 - Prob. 19.56PCh. 19.2 - Prob. 19.57PCh. 19.2 - Prob. 19.58PCh. 19.2 - Prob. 19.59PCh. 19.2 - Prob. 19.60PCh. 19.2 - Two uniform rods, each of weight W = 24 lb and...Ch. 19.2 - A homogeneous rod of mass per unit length equal to...Ch. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 60-kg uniform circular plate is welded to two...Ch. 19.2 - Prob. 19.66PCh. 19.2 - Prob. 19.67PCh. 19.2 - The centroidal radius of gyration ky of an...Ch. 19.3 - Two blocks each have a mass 1.5 kg and are...Ch. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - Prob. 19.77PCh. 19.3 - Blade AB of the experimental wind-turbine...Ch. 19.3 - A 15-lb uniform cylinder can roll without sliding...Ch. 19.3 - Prob. 19.80PCh. 19.3 - Prob. 19.81PCh. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - A 10-lb uniform rod CD is welded at C to a shaft...Ch. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - Prob. 19.93PCh. 19.3 - A uniform rod of length L is supported by a...Ch. 19.3 - Prob. 19.95PCh. 19.3 - Three collars each have a mass m and are connected...Ch. 19.3 - Prob. 19.97PCh. 19.3 - As a submerged body moves through a fluid, the...Ch. 19.4 - A 4-kg collar can slide on a frictionless...Ch. 19.4 - Prob. 19.100PCh. 19.4 - A collar with mass m that slides on a frictionless...Ch. 19.4 - Prob. 19.102PCh. 19.4 - The 1.2-kg bob of a simple pendulum of length l =...Ch. 19.4 - Prob. 19.104PCh. 19.4 - A precision experiment sits on an optical table...Ch. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Rod AB is rigidly attached to the frame of a motor...Ch. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - A motor of weight 100 lb is supported by four...Ch. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - One of the tail rotor blades of a helicopter has...Ch. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - A 60-lb disk is attached with an eccentricity e =...Ch. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - Prob. 19.138PCh. 19.5 - A machine element weighing 500 lb is supported by...Ch. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - A 36-lb motor is bolted to a light horizontal beam...Ch. 19.5 - One of the tail rotor blades of a helicopter has...Ch. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - Prob. 19.149PCh. 19.5 - Prob. 19.150PCh. 19.5 - The suspension of an automobile can be...Ch. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - 19.155 and 19.156 Draw the electrical analog of...Ch. 19.5 - Prob. 19.156PCh. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19 - An automobile wheel-and-tire assembly of total...Ch. 19 - Prob. 19.160RPCh. 19 - Disks A and B weigh 30 lb and 12 lb, respectively,...Ch. 19 - A small trailer and its load have a total mass of...Ch. 19 - A 0.8-lb ball is connected to a paddle by means of...Ch. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - A small ball of mass m attached at the midpoint of...Ch. 19 - Prob. 19.169RPCh. 19 - If either a simple or a compound pendulum is used...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 5-kg collar Cis released from rest in the position shown and slides without friction on a vertical rod until it hits a spring with a constant of k= 720 N/m that it compresses. The velocity of the collar is reduced to zero, and the collar reverses the direction of its motion and returns to its initial position. The cycle is then repeated. Determine (a) the period of the motion of the collar, (b) the velocity of the collar 0.4 s after it was released. (Note: This is a periodic motion, but it is not simple harmonic motion.)arrow_forwardA slider crank mechanism, FIG. A5, consists of a piston of 2.5 kg mass and a crank of 50 mm eccentricity. If the piston moves with simple harmonic motion at a frequency of 15 Hz determine (a) the maximum kinetic energy of the piston to 2 sig. fig., (b) the kinetic energy of the piston when e = 60° to 2 sig. fig..arrow_forwardA 3-lb block is supported as shown by a spring of constant k= 2 lb/in. that can act in tension or compression. The block is in its equilibrium position when it is struck from below by a hammer that imparts to the block an upward velocity of 90 in./s. Determine (a) the time required for the block to move 3 in. upward, (b) the corresponding velocity and acceleration of the block.arrow_forward
- Problem 38.3 Two uniform rods, each of weight W = 24 lb and length L = 2 ft, are welded together to form the assembly shown. Knowing that the constant of each spring is k = 3 lb/in. and that end A is given a small displacement and released, determine the frequency of the resulting motion. B wwarrow_forwardA slender 12.7-kg rod can rotate in a vertical plane about a pivot at A. A spring of constant k= 89 N/m and of unstretched length 350 mm is attached to the rod as shown. Knowing that the rod is released from rest in position (1) (0 = 0°), it has rotated through 90° to reach position (2) (0 = 90°). 400 mm 0=0 200 mm 300 mm 200 mm 0=90 kinetic energy at position (1) (Joules) moment of inertia about the hinge (kg.m²) a. 0.8 о Б.0.97 c. 0.64 d. 1.13 е. 0.32 work due weight (N.m) wwwarrow_forwardA slender 12.7-kg rod can rotate in a vertical plane about a pivot at A. A spring of constant k= 121 N/m and of unstretched length 370 mm is attached to the rod as shown. Knowing that the rod is released from rest in position (1) (0 =0°), it has rotated through 90° to reach position (2) ( e = 90°). 400 mm K 0=o 200 mm B 300 mm 200 mm 0=90arrow_forward
- A slender 12.7-kg rod can rotate in a vertical plane about a pivot at A. A spring of constant k= 121 N/m and of unstretched length 370 mm is attached to the rod as shown. Knowing that the rod is released from rest in position (1) (0 = 0°), it has rotated through 90° to reach position (2) ( e = 90°). 400 mm K -0=0 200 mm B 300 mm 200 mm 0=90 kinetic energy at position (1) (Joules) moment of inertia about the hinge (kg.m2) a. 0,8 O b. 0.97 c. 0.64 d. 1.13 O e. 0.32 work due weight (N.m) work due to spring (N.m) a. -5,57 b. -6.68 C. -4.45 d. -7.79 e. -2.23 angular velocity in position (2) (rad/s) О а. 5.71 b. 6.85 C. 4.57 d. 7,99 O e. 2.28 O o o C ооarrow_forwardwork due to spring (N.m) angular velocity in position (2) (rad/s)arrow_forwardQuiz Number 6 - Middle Initial is B, G, L, Q, V 1. A connecting rod supported by a knife-edge at point A. For small oscillations the angular acceleration of the connecting rod is governed by the relation a = -60 where a is expressed in rad/s² and 0 in radians. Knowing that the connecting rod is released from rest when 0 = 22.4°, determine a. the maximum angular velocity, b. the angular position when t = 2. 24 s. Barrow_forward
- A 30-lb uniform cylinder can roll without sliding on a 15° incline. A belt is attached to the rim of the cylinder, and a spring holds the cylinder at rest in the position shown. If the center of the cylinder is moved 2 in. down the incline and released, determine (a) the period of vibration, (b) the maximum acceleration of the center of the cylinder.arrow_forwardTwo 12-lb uniform disks are attached to the 20-lb rod AB as shown. Knowing that the constant of the spring is 30 lb/in. and that the disks roll without sliding, determine the frequency of vibration of the system.arrow_forwardFrom mechanics of materials it is known that when a static load P is applied at the end B of a uniform metal rod fixed at end A, the length of the rod will increase by an amount δ=PL/AE, where L is the length of the undeformed rod, A is its cross- sectional area, and E is the modulus of elasticity of the metal. Knowing that L = 450 mm and E = 200 GPa and that the diameter of the rod is 8 mm, and neglecting the mass of the rod, determine (a) the equivalent spring constant of the rod, (b ) the frequency of the vertical vibrations of a block of mass m = 8 kg attached to end B of the same rod.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License