s8. Use standard free energies of formation to calculate
Substance | |
N2O(g) | 103.7 |
MgO(s) | −569.3 |
- 465.6 kJ
- −673.0 kJ
- −465.6 kJ
- 673.0 kJ
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Chemistry: Structures and Properties, Books a la Carte Plus MasteringChemistry with eText -- Access Card Package
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
College Physics: A Strategic Approach (3rd Edition)
Fundamentals of Physics Extended
Organic Chemistry (8th Edition)
General, Organic, and Biological Chemistry - 4th edition
Physical Universe
- Thermodynamics provides a way to interpret everyday occurrences. If you live in northern climates, one common experience is that during early winter, snow falls but then melts when it hits the ground. Both the formation and the melting happen spontaneously. How can thermodynamics explain both of these seemingly opposed events?arrow_forwardGiven the following data 2O3(g) 3O2(g)H = 427 kJ O2(g) 2O(g)H = 495 kJ NO(g) + O3(g) NO2(g) + O2(g)H = 199 kJ Calculate H for the reaction NO(g) + O(g) NO2(g)arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forward
- How is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forwardFor the reaction TiCl2(s) + Cl2(g) TiCl4(), rG = 272.8 kj/mol-txn. Using this value and other data available in Appendix L, calculate the value of fG for TiCl2(s).arrow_forwardDefine the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forward
- Solid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forwardUse the data in Appendix G to calculate the standard entropy change for H2(g) + CuO(s) H2O() + Cu(s)arrow_forwardFor the reaction C2H2(g)+4F2(g)2CF4(g)+H2(g) S is equal to 358 J/K. Use this value and data from Appendix 4 to calculate the value of S for CF4(g).arrow_forward
- What is meant by the standard free-energy change G for a reaction? What is meant by the standard free energy of formation Gf of a substance?arrow_forwardAthletic trainers use instant ice packs that can be cooled quickly on demand. Squeezing the pact breaks an inner container, allowing two components to mix and react. This reaction makes the pack become cold. Describe the heat flow for this spontaneous process.arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning