(a)
Interpretation:
For burning of phosphorus in excess oxygen, balanced chemical equation has to be written.
(a)
Explanation of Solution
Phosphorus belongs to Group VA in periodic table. It is a non-metal. Non-metals burns with oxygen to attain highest possible oxidation state. Highest oxidation state of phosphorus is
When phosphorus burns in oxygen, phosphorus pentoxide is formed. This can be represented as,
Balanced chemical equation can be given as,
(b)
Interpretation:
(b)
Explanation of Solution
Non-metals burns in excess oxygen to form oxides that are acidic in nature. This means that they can react with water to form aqueous acid. Phosphorus pentoxide reacts with water to form phosphoric acid. This can be represented as,
Molarity of phosphoric acid formed when
Equilibrium expression can be represented for the above reaction as,
The concentration of products increases stoichiometrically until the equilibrium is reached.
|
Initial |
Change |
Equilibrium |
Equilibrium constant for phosphoric acid is
Solving the above equation,
Value of
Therefore,
(c)
Interpretation:
Balanced chemical equation for the reaction of phosphoric acid solution with calcium nitrate resulting in formation of a white precipitate has to be written and the mass of precipitate has to be calculated.
(c)
Explanation of Solution
Phosphoric acid solution reacts with aqueous calcium nitrate to form calcium phosphate. The formed calcium phosphate is precipitated as white precipitate. Chemical equation can be given as,
Balancing calcium atom: In the reactant side, there is only one calcium atom while in the product side, there are three calcium atoms. Hence, coefficient “3” has to be added before calcium nitrate in the reactant side. The chemical equation obtained is,
Balancing phosphorus atom: In the reactant side, there is only one phosphorus atom while in the product side, there are two phosphorus atoms. Hence, coefficient “2” has to be added before phosphoric acid in the reactant side. The chemical equation obtained is,
Balancing nitrogen atom: In the reactant side, there are six nitrogen atoms while in the product side, there is one nitrogen atom. Hence, coefficient “6” has to be added before nitric acid in the product side. This balances out all the atoms present in the chemical equation. The balanced chemical equation obtained is,
Mass of the precipitate obtained can be calculated by finding the limiting reactant. In the problem statement it is given that that limiting reactant is phosphoric acid. Therefore, the mass of precipitate can be calculated as,
Therefore, the mass of precipitate is
(d)
Interpretation:
Gas that is evolved on addition of zinc to the remaining solution has to be identified and the volume of gas has to be calculated at STP.
(d)
Explanation of Solution
Phosphoric acid solution reacts with aqueous calcium nitrate to form calcium phosphate. The formed calcium phosphate is precipitated as white precipitate. Balanced chemical equation can be given as,
When zinc is added to the solution, it reacts with the nitric acid to liberate hydrogen gas and metal salt. The salt formed is zinc nitrate. The chemical equation can be represented as,
The gas that is liberated is hydrogen. Mol of hydrogen that is liberated can be calculated as shown below,
Volume of hydrogen gas liberated at STP can be calculated using the molar volume of gas as shown below,
Therefore, the volume of hydrogen gas liberated is
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry: The Molecular Science
- Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardDraw the skeletal structure of the alkane 4-ethyl-2, 2, 5, 5- tetramethylnonane. How many primary, secondary, tertiary, and quantenary carbons does it have?arrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardThe number of imaginary replicas of a system of N particlesA) can never become infiniteB) can become infiniteC) cannot be greater than Avogadro's numberD) is always greater than Avogadro's number.arrow_forwardElectronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forwardGeneral formula etherarrow_forward
- Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward(please correct answer and don't used hand raiting) Please provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning