Organic Chemistry
Organic Chemistry
2nd Edition
ISBN: 9781118452288
Author: David R. Klein
Publisher: WILEY
Question
Book Icon
Chapter 19, Problem 72PP

 (a)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with  KMnO4 to give carboxylic acids.

(b)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with KMNO4  to give carboxylic acids.

(c)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with  KMNO4 to give carboxylic acids.

(d)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with  KMNO4 to give carboxylic acids.

(e)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with KMNO4 to give carboxylic acids.

(f)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with  KMNO4 to give carboxylic acids.

(g)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with  KMNO4 to give carboxylic acids.

(h)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with  KMnO4 to give carboxylic acids.

(i)

Interpretation Introduction

Interpretation:

The synthetic route of given following reactions were predicted with other reagents.

Concept Introduction:

  • Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
  • Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction. 
  • The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
  • If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
  • If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
  • Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
  • Oxidation of aromatic alkane with KMnO4  to give carboxylic acids.

Blurred answer
Students have asked these similar questions
43) 10.00 ml of vinegar (active ingredient is acetic acid) is titrated to the endpoint using 19.32 ml of 0.250 M sodium hydroxide. What is the molarity of acetic acid in the vinegar? YOU MUST SHOW YOUR WORK. NOTE: MA x VA = MB x VB
424 Repon Sheet Rates of Chemical Reactions : Rate and Order of 1,0, Deception B. Effect of Temperature BATH TEMPERATURE 35'c Yol of Oh نام Time 485 Buret rend ing(n) 12 194 16. 6 18 20 10 22 24 14 115 95 14738 2158235 8:26 CMS 40148 Total volume of 0, collected Barometric pressure 770-572 ml mm Hg Vapor pressure of water at bath temperature (see Appendix L) 42.2 Slope Compared with the rate found for solution 1, there is Using the ideal gas law, calculate the moles of O; collected (show calculations) times faster 10 Based on the moles of O, evolved, calculate the molar concentration of the original 3% 1,0, solution (sho calculations)
Steps and explanation please

Chapter 19 Solutions

Organic Chemistry

Ch. 19.7 - Prob. 11CCCh. 19.7 - Prob. 12CCCh. 19.8 - Prob. 13CCCh. 19.9 - Prob. 14CCCh. 19.9 - Prob. 15CCCh. 19.10 - Prob. 1LTSCh. 19.10 - Prob. 16PTSCh. 19.10 - Prob. 17ATSCh. 19.10 - Prob. 18ATSCh. 19.11 - Prob. 2LTSCh. 19.11 - Prob. 19PTSCh. 19.11 - Prob. 20ATSCh. 19.11 - Prob. 21ATSCh. 19.11 - Prob. 3LTSCh. 19.11 - Prob. 22PTSCh. 19.11 - Prob. 23ATSCh. 19.11 - Prob. 24ATSCh. 19.11 - Prob. 4LTSCh. 19.11 - Prob. 25PTSCh. 19.11 - Prob. 26ATSCh. 19.11 - Prob. 27ATSCh. 19.12 - Prob. 28CCCh. 19.12 - Prob. 29CCCh. 19.12 - Prob. 5LTSCh. 19.12 - Prob. 30PTSCh. 19.12 - Prob. 31ATSCh. 19.12 - Prob. 32ATSCh. 19.12 - Prob. 6LTSCh. 19.12 - Prob. 33PTSCh. 19.12 - Prob. 34ATSCh. 19.13 - Prob. 35CCCh. 19.13 - Prob. 36CCCh. 19.13 - Prob. 37CCCh. 19.14 - Prob. 38CCCh. 19.14 - Prob. 39CCCh. 19.15 - Prob. 7LTSCh. 19.15 - Prob. 40PTSCh. 19.15 - Prob. 41PTSCh. 19.15 - Prob. 42ATSCh. 19 - Prob. 43PPCh. 19 - Prob. 44PPCh. 19 - Prob. 45PPCh. 19 - Prob. 46PPCh. 19 - Prob. 47PPCh. 19 - Prob. 48PPCh. 19 - Prob. 49PPCh. 19 - Prob. 50PPCh. 19 - Prob. 51PPCh. 19 - Prob. 52PPCh. 19 - Prob. 53PPCh. 19 - Prob. 54PPCh. 19 - Prob. 55PPCh. 19 - Prob. 56PPCh. 19 - Prob. 57PPCh. 19 - Prob. 58PPCh. 19 - Prob. 59PPCh. 19 - Prob. 60PPCh. 19 - Prob. 61PPCh. 19 - Prob. 62PPCh. 19 - Prob. 63PPCh. 19 - Prob. 64PPCh. 19 - Prob. 65PPCh. 19 - Prob. 66PPCh. 19 - Prob. 67PPCh. 19 - Prob. 68PPCh. 19 - Prob. 69PPCh. 19 - Prob. 70PPCh. 19 - Prob. 71PPCh. 19 - Prob. 72PPCh. 19 - Prob. 73PPCh. 19 - Prob. 74IPCh. 19 - Prob. 75IPCh. 19 - Prob. 76IPCh. 19 - Prob. 77IPCh. 19 - Prob. 78IPCh. 19 - Prob. 79IPCh. 19 - Prob. 80IPCh. 19 - Prob. 81IPCh. 19 - Prob. 82IPCh. 19 - Prob. 83IP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY