Organic Chemistry
2nd Edition
ISBN: 9781118452288
Author: David R. Klein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 59PP
(a)
Interpretation Introduction
Interpretation:
- The most likely position at which monobromination could occur has to be identified.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in
aromatic compounds . Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through
alkyl halides oralkenes.
(b)
Interpretation Introduction
Interpretation:
- The most likely position at which monobromination could occur has to be identified.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
(c)
Interpretation Introduction
Interpretation:
- The most likely position at which monobromination could occur has to be identified.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Organic Chemistry
Ch. 19.2 - Prob. 1CCCh. 19.3 - Prob. 2CCCh. 19.3 - Prob. 3CCCh. 19.4 - Prob. 4CCCh. 19.5 - Prob. 5CCCh. 19.5 - Prob. 6CCCh. 19.5 - Prob. 7CCCh. 19.6 - Prob. 8CCCh. 19.6 - Prob. 9CCCh. 19.6 - Prob. 10CC
Ch. 19.7 - Prob. 11CCCh. 19.7 - Prob. 12CCCh. 19.8 - Prob. 13CCCh. 19.9 - Prob. 14CCCh. 19.9 - Prob. 15CCCh. 19.10 - Prob. 1LTSCh. 19.10 - Prob. 16PTSCh. 19.10 - Prob. 17ATSCh. 19.10 - Prob. 18ATSCh. 19.11 - Prob. 2LTSCh. 19.11 - Prob. 19PTSCh. 19.11 - Prob. 20ATSCh. 19.11 - Prob. 21ATSCh. 19.11 - Prob. 3LTSCh. 19.11 - Prob. 22PTSCh. 19.11 - Prob. 23ATSCh. 19.11 - Prob. 24ATSCh. 19.11 - Prob. 4LTSCh. 19.11 - Prob. 25PTSCh. 19.11 - Prob. 26ATSCh. 19.11 - Prob. 27ATSCh. 19.12 - Prob. 28CCCh. 19.12 - Prob. 29CCCh. 19.12 - Prob. 5LTSCh. 19.12 - Prob. 30PTSCh. 19.12 - Prob. 31ATSCh. 19.12 - Prob. 32ATSCh. 19.12 - Prob. 6LTSCh. 19.12 - Prob. 33PTSCh. 19.12 - Prob. 34ATSCh. 19.13 - Prob. 35CCCh. 19.13 - Prob. 36CCCh. 19.13 - Prob. 37CCCh. 19.14 - Prob. 38CCCh. 19.14 - Prob. 39CCCh. 19.15 - Prob. 7LTSCh. 19.15 - Prob. 40PTSCh. 19.15 - Prob. 41PTSCh. 19.15 - Prob. 42ATSCh. 19 - Prob. 43PPCh. 19 - Prob. 44PPCh. 19 - Prob. 45PPCh. 19 - Prob. 46PPCh. 19 - Prob. 47PPCh. 19 - Prob. 48PPCh. 19 - Prob. 49PPCh. 19 - Prob. 50PPCh. 19 - Prob. 51PPCh. 19 - Prob. 52PPCh. 19 - Prob. 53PPCh. 19 - Prob. 54PPCh. 19 - Prob. 55PPCh. 19 - Prob. 56PPCh. 19 - Prob. 57PPCh. 19 - Prob. 58PPCh. 19 - Prob. 59PPCh. 19 - Prob. 60PPCh. 19 - Prob. 61PPCh. 19 - Prob. 62PPCh. 19 - Prob. 63PPCh. 19 - Prob. 64PPCh. 19 - Prob. 65PPCh. 19 - Prob. 66PPCh. 19 - Prob. 67PPCh. 19 - Prob. 68PPCh. 19 - Prob. 69PPCh. 19 - Prob. 70PPCh. 19 - Prob. 71PPCh. 19 - Prob. 72PPCh. 19 - Prob. 73PPCh. 19 - Prob. 74IPCh. 19 - Prob. 75IPCh. 19 - Prob. 76IPCh. 19 - Prob. 77IPCh. 19 - Prob. 78IPCh. 19 - Prob. 79IPCh. 19 - Prob. 80IPCh. 19 - Prob. 81IPCh. 19 - Prob. 82IPCh. 19 - Prob. 83IP
Knowledge Booster
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY