Concept explainers
(a)
The current that is needed to generate a magnetic field that has a magnitude of 0.50 T

Answer to Problem 71QAP
The current that is needed to generate a magnetic field of 0.50 T= 3.0 x 102 A(rounded to two significant figures)
Explanation of Solution
Given:
A coil of wire has a diameter of 15 cm = 0.15 m is consisting 250 windings. The magnitude of the magnetic field generated by the coil due to a current that flows through is 0.050 T at a perpendicular distance of 30 cm from the center of the coil.
Formula used:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Calculation:
It is given that the magnitude of the magnetic field at perpendicular distance 3.0 cm from the center of the coil is 0.50 T. The diameter of the coil is given as 15 cm which implies that the radius of the coil is 7.5 cm. Also, the number of the windings of the coil is given as 250.Substituing these values to equation (a) one could easily find the current that generate the desired magnetic field of 0.50 T.
Conclusion:
The current that is needed to generate a magnetic field of 0.50 T= 3.0 x 102 A (rounded to two significant figures)
(b)
The magnitude of magnetic field at the center of the coil at the forehead

Answer to Problem 71QAP
The magnitude of the magnetic field at the center of the forehead= 0.62 T
Explanation of Solution
Given:
A coil of wire has a diameter of 15 cm = 0.15 m is consisting 250 windings. The magnitude of the magnetic field generated by the coil due to a current that flows through is 0.050 T at a perpendicular distance of 30 cm from the center of the coil.
Formula used:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Calculation:
It is deduced from part a) that the current that generate a magnetic field of magnitude 0.50 T at a perpendicular distance of 3.0 cm from the center of the coil is 298 A. Now we are asked to calculate the magnitude of the magnetic field at the center of the coil. The diameter of the coil is given as 15 cm which implies that the radius of the coil is 7.5 cm. Also, the number of the windings of the coil is given as 250.Substituing these values to equation (a) one could easily find the magnitude of the magnetic field at the center. Note here that since we have to calculate the magnetic field at the center of the coil the perpendicular distance measured from the center of the coil(z) is 0 cm.
Substituting to equation(a);
Conclusion:
The magnitude of the magnetic field at the center of the coil = 0.62 T
(c)
If the current needed in part a) is too high how could one easily achieve the same magnetic field of 0.50 T

Answer to Problem 71QAP
The easiest way that one could compensate for higher currents inside a loop in order to generate a particular magnetic field magnitude is to increase the number of windings in the loop.
Explanation of Solution
Given:
From the calculations in part a) it has been deduced that a current of 298 A is required to generate a magnetic field of 0.50 T from a loop that has 250 windings.
Calculation:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Careful inspection of equation (a) reveals us that Bz is directly proportional to N.So instead of increasing the current(i) one could increase N to achieve higher Bz values.
Conclusion:
The easiest way that one could compensate for higher currents inside a loop in order to generate a particular magnetic field magnitude is to increase the number of windings in the loop
Want to see more full solutions like this?
Chapter 19 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- A circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forwardA 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit. Find the direction of the current induced in the circuit. Calculate the current through the resistor.arrow_forward
- In the figure, a conducting rod with length L = 29.0 cm moves in a magnetic field B→ of magnitude 0.510 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. When the charges in the rod are in equilibrium, which point, a or b, has an excess of positive charge and where does the electric field point? What is the magnitude E of the electric field within the rod, the potential difference between the ends of the rod, and the magnitude E of the motional emf induced in the rod? Which point has a higher potential? Please explain all stepsarrow_forwardExamine the data and % error values in Data Table 2 where the mass of the pendulum bob increased but the angular displacement and length of the simple pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the mass of the pendulum bob, to within a reasonable percent error.arrow_forwardPlease graph, my software isn't working - Data Table 4 of Period, T vs √L . (Note: variables are identified for graphing as y vs x.) On the graph insert a best fit line or curve and display the equation on the graph. Thank you!arrow_forward
- I need help with problems 93 and 94arrow_forwardSince the instruction says to use SI units with the correct sig-fig, should I only have 2 s for each trial in the Period column? Determine the theoretical period of the pendulum using the equation T= 2π √L/g using the pendulum length, L, from Data Table 2. Calculate the % error in the periods measured for each trial in Data Table 2 then recordarrow_forwardA radiography contingent are carrying out industrial radiography. A worker accidentally crossed a barrier exposing themselves for 15 seconds at a distance of 2 metres from an Ir-192 source of approximately 200 Bq worth of activity. What dose would they have received during the time they were exposed?arrow_forward
- In the following figure the circuit to the left has a switch thatat t = 0 s is switched and disconnects the battery from the circuit. The state depicted on thefigure is right after the switch, still t = 0. As the current decreases over time, the magneticflux through the circuit on the right (due to the long cable of the circuit on the left) changesand induces an EMF on the right circuit. How much power is consumed by R2 as a functionof time.The distance between the wire on the left and the closest wire on the right is r = 2.0 cm.The size of the circuit on the right is noted on the figure.arrow_forwardsingly A samply ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n=7 excited state. The ion returns to wo the wavelength the ground state by emitting SIX photons ONLY. What is the of the second highest energy photon ?arrow_forwardAn electron, traveling at a speed of 5.60x10° m/s, strikes the target of an X-ray tube. Upon impart, the eletion decelerates to one-third of it's original speed, with an X-ray photon being emitted in the process. What is the wavelength of the photon? m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





