Concept explainers
(a)
The current that is needed to generate a magnetic field that has a magnitude of 0.50 T

Answer to Problem 71QAP
The current that is needed to generate a magnetic field of 0.50 T= 3.0 x 102 A(rounded to two significant figures)
Explanation of Solution
Given:
A coil of wire has a diameter of 15 cm = 0.15 m is consisting 250 windings. The magnitude of the magnetic field generated by the coil due to a current that flows through is 0.050 T at a perpendicular distance of 30 cm from the center of the coil.
Formula used:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Calculation:
It is given that the magnitude of the magnetic field at perpendicular distance 3.0 cm from the center of the coil is 0.50 T. The diameter of the coil is given as 15 cm which implies that the radius of the coil is 7.5 cm. Also, the number of the windings of the coil is given as 250.Substituing these values to equation (a) one could easily find the current that generate the desired magnetic field of 0.50 T.
Conclusion:
The current that is needed to generate a magnetic field of 0.50 T= 3.0 x 102 A (rounded to two significant figures)
(b)
The magnitude of magnetic field at the center of the coil at the forehead

Answer to Problem 71QAP
The magnitude of the magnetic field at the center of the forehead= 0.62 T
Explanation of Solution
Given:
A coil of wire has a diameter of 15 cm = 0.15 m is consisting 250 windings. The magnitude of the magnetic field generated by the coil due to a current that flows through is 0.050 T at a perpendicular distance of 30 cm from the center of the coil.
Formula used:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Calculation:
It is deduced from part a) that the current that generate a magnetic field of magnitude 0.50 T at a perpendicular distance of 3.0 cm from the center of the coil is 298 A. Now we are asked to calculate the magnitude of the magnetic field at the center of the coil. The diameter of the coil is given as 15 cm which implies that the radius of the coil is 7.5 cm. Also, the number of the windings of the coil is given as 250.Substituing these values to equation (a) one could easily find the magnitude of the magnetic field at the center. Note here that since we have to calculate the magnetic field at the center of the coil the perpendicular distance measured from the center of the coil(z) is 0 cm.
Substituting to equation(a);
Conclusion:
The magnitude of the magnetic field at the center of the coil = 0.62 T
(c)
If the current needed in part a) is too high how could one easily achieve the same magnetic field of 0.50 T

Answer to Problem 71QAP
The easiest way that one could compensate for higher currents inside a loop in order to generate a particular magnetic field magnitude is to increase the number of windings in the loop.
Explanation of Solution
Given:
From the calculations in part a) it has been deduced that a current of 298 A is required to generate a magnetic field of 0.50 T from a loop that has 250 windings.
Calculation:
The z component of the magnetic field(Bz) for a coil of wire with N windings carrying a current i is given by the following equation.
Careful inspection of equation (a) reveals us that Bz is directly proportional to N.So instead of increasing the current(i) one could increase N to achieve higher Bz values.
Conclusion:
The easiest way that one could compensate for higher currents inside a loop in order to generate a particular magnetic field magnitude is to increase the number of windings in the loop
Want to see more full solutions like this?
Chapter 19 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- a 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forwardBlock A, with a mass of 10 kg, rests on a 30° incline. The coefficient of kinetic friction is 0.20. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 15.0 kg. is attached to the dangling end of the string. What is the acceleration of Block B in m/s? show all steps pleasearrow_forwardWhen current is flowing through the coil, the direction of the torque can be thought of in two ways. Either as the result of the forces on current carrying wires, or as a magnetic dipole moment trying to line up with an external field (e.g. like a compass). Note: the magnetic moment of a coil points in the direction of the coil's magnetic field at the center of the coil. d) Forces: We can consider the left-most piece of the loop (labeled ○) as a short segment of straight wire carrying current directly out of the page at us. Similarly, we can consider the right-most piece of the loop (labeled ) as a short segment straight wire carrying current directly into the page, away from us. Add to the picture below the two forces due to the external magnetic field acting on these two segments. Then describe how these two forces give a torque and determine if the torque acts to rotate the loop clockwise or counterclockwise according to this picture? Barrow_forward
- In each of the following, solve the problem stated. Express your answers in three significant figures. No unit is considered incorrect. 1. For the circuit shown, determine all the currents in each branch using Kirchhoff's Laws. (3 points) 6 5V 2 B C 4 A www 6 VT ww T10 V F E 2. Compute for the total power dissipation of the circuit in previous item. (1 point) 3. Use Maxwell's Mesh to find Ix and VAB for the circuit shown. (3 points) Ix 50 V 20 ww 21x B 4. Calculate all the currents in each branch using Maxwell's Mesh for the circuit shown. (3 points) www 5ი 10 24V 2A 2002 36Varrow_forwardIf the mass of substance (1 kg), initial temperature (125˚C), the final temperature (175˚C) and the total volume of a closed container (1 m3) remains constant in two experiments, but one experiment is done with water ( ) and the other is done with nitrogen ( ). What is the difference in the change in pressure between water and nitrogen?arrow_forwardUsing the simplified energy balance in Equation 1, suppose there is heat transfer of 40.00 J to a system, while the system does 10.00 J of work. Later, there is heat transfer of 25.00 J out of the system while 4.00 J of work is done on the system. What is the net change in internal energy of the system?arrow_forward
- You pour a litre (1 kg) of 25.0˚C water into a 0.500 kg aluminium pan off the stove, but has previously been heated so it starts with a temperature of 120˚C. What is the temperature when the water and the pan reach thermal equilibrium (i.e., what is the temperature of both objects when they reach the same temperature)? Assume that the pan is placed on an insulated pad and a negligible amount of water boils off.arrow_forwardA golf club hits a golf ball and the golf ball’s flight reaches a maximum height of 5.48 m. Calculate the momentum of the golf ball at the maximum height if the mass of the golf ball is 0.459 kg.arrow_forward• Superposition Theorem • Thevenin's and Norton's Theorem 1. Find the unknown voltage V₁, unknown resistances R1 and R2, and currents flowing through R1 and R2 for the circuit shown below using Superposition Theorem. 40 V + R₁₂ w B C ♥16A 10A www 4A F ww 2 E Ꭰ 2. Use Thevenin's Theorem to find the current flowing in 3-ohm resistor and its power dissipation from the circuit shown in the right. + 3. Use Norton's Theorem for the same instruction as for No. 2. 8 V A www 202 B wwww 20 Ω 10 V + 302 202 www C - 12 V 502 www.arrow_forward
- Fill in blanksarrow_forwardA rock is dropped from a height of 2.00 m. Determine the velocity of the rock just before it hits the ground. If the momentum of the rock just before hitting the ground is 14.0 kg m/s, what is the mass of the rock? Is the collision between the rock and the ground elastic or inelastic? Explain.arrow_forwardDescribe how the momentum of a single ball changes as it free falls from a height of approximately 1 m, collides with a hard floor, and rebounds.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





