Concept explainers
(a)
The magnitude of magnetic field at y =0 cm according to the adapted coordinate system
Answer to Problem 70QAP
The magnitude of the magnetic field at (y =0 cm) = 0 T
Or in other words there is no magnetic field at y= 0 cm
Explanation of Solution
Given:
Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.
Formula used:
Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand.
Calculation:
One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.
Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.
Applying the right hand rule one could clearly see that Btop acts in the -z direction while Bbottomacts in the +z direction.
Let B= total magnitude of the magnetic field at y=0 cm
Then B = Btop + Bbottom
Substituting for equation (a) we could find B as follows where rtop= distance from the top wire to y=0 and rbottom= distance from the bottom wire to y=0.
Conclusion:
The magnitude of the magnetic field at (y =0 cm) = 0 T
Or in other words there is no magnetic field at y= 0 cm
(b)
The magnitude of magnetic field at y = 1.0 cm according to the adapted coordinate system
Answer to Problem 70QAP
The magnitude of the magnetic field at (y =1.0 cm) = (-1.2 x 10-4)T
Explanation of Solution
Given:
Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.
Calculation:
One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.
Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.
Applying the right handrule, one could clearly see that Btop acts in the -z direction while Bbottomacts in the +z direction.
Let B= total magnitude of the magnetic field at y=1.0 cm
Then B = Btop + Bbottom
Substituting for equation (a) we could find B as follows where rtop= distance from the topwire to y=1.0cm and rbottom= distance from the bottom wire to y=1.0 cm.
Conclusion:
The magnitude of the magnetic field at (y =1.0 cm) = (-1.2 x 10-4)T
(c)
The magnitude of magnetic field at y = 4.0 cm according to the adapted coordinate system
Answer to Problem 70QAP
The magnitude of the magnetic field at (y =4.0 cm) = (2.6 x 10-4)T
Explanation of Solution
Given:
Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.
Calculation:
One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.
Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.
Applying the right hand rule, one could clearly see that Btop acts in the +z direction while Bbottomalso acts in the +z direction.
Let B= total magnitude of the magnetic field at y=4.0 cm
Then B = Btop + Bbottom
Substituting for equation (a) we could find B as follows where rtop= distance from the top wire to y=4.0cm and rbottom= distance from the bottom wire to y=4.0 cm.
Conclusion:
The magnitude of the magnetic field at (y =4.0 cm) = (2.6 x 10-4)T
Want to see more full solutions like this?
Chapter 19 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning