Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 62PQ

(a)

To determine

The density of gasoline on a very hot day (T=95°F).

(a)

Expert Solution
Check Mark

Answer to Problem 62PQ

The density of gasoline on a very hot day (T=95°F) is 723.88kg/m3.

Explanation of Solution

Write the expression for the decreasing density of gasoline.

  ρ0=mV0                                                                                                            (I)

Here, ρ0 is the decreasing density of the gasoline, m is the mass of the gasoline, and V0 is the increasing volume of the gas.

Rearrange the equation (I) for m.

  m=ρ0V0                                                                                                          (II)

Write the expression for the expansion of volume (Refer Equation 19.5).

  ΔVβV0ΔT                                                                                                   (III)

Here, ΔV is the change in volume, V0 is the initial volume, β is the coefficient of volume expansion, and ΔT is the change in temperature.

Write the expression for the original density of gasoline.

  ρ=mV                                                                                                             (IV)

Here, ρ is the density of the gasoline, m is the mass of the gasoline, and V is the change in volume of the gasoline container.

Conclusion:

Substitute equation (II) in the equation (IV) and replace V0+ΔV for V.

  ρ=ρ0V0V=ρ0V0V0+ΔV=ρ01+(ΔVV0)

Substitute equation (III) in above equation.

  ρ=ρ01+(βV0ΔTV0)=ρ01+β(TfTi)                                                                                              (V)

Here, Ti is the initial temperature and Tf is the final temperature.

Convert initial temperature of the gas into degree Celsius.

  Ti=(60°F32)59=15.6°C

Convert final temperature of the gas into degree Celsius.

  Tf=(95°F32)59=35°C

Substitute 950×106°C1 for β (Refer Table 19.2), 737.22kg/m3 for ρ0, 15.6°C for Ti, and 35°C for Tf in equation (V) to find ρ.

  ρ=(737.22kg/m3)[1+(950×106°C1)(35°C15.6°C)]=723.88kg/m3

Therefore, the density of gasoline on a very hot day (T=95°F) is 723.88kg/m3.

(b)

To determine

The mass of the gasoline purchased at a temperature of 60°F.

(b)

Expert Solution
Check Mark

Answer to Problem 62PQ

The mass of the gasoline purchased at a temperature of 60°F is 33.5kg.

Explanation of Solution

Rearrange the equation (IV) from part (a) for m.

  m=ρV                                                                                                      (VI)

Conclusion:

Substitute 737.22kg/m3 for ρ (at 60°F) and 12.0gal for V in equation (VI) to find m.

      m=(737.22kg/m3)(12.0gal)(0.003785m31gal)=33.5kg

Therefore, the mass of the gasoline purchased at a temperature of 60°F is 33.5kg.

(c)

To determine

The mass of the gasoline purchased at a temperature of 95°F.

(c)

Expert Solution
Check Mark

Answer to Problem 62PQ

The mass of the gasoline purchased at a temperature of 95°F is 32.9kg.

Explanation of Solution

Rearrange the equation (IV) from part (a) for m.

  m=ρV

Conclusion:

Substitute 723.88kg/m3 for ρ (at 95°F) and 12.0gal for V in above equation to find m.

      m=(723.88kg/m3)(12.0gal)(0.003785m31gal)=32.9kg

Therefore, the mass of the gasoline purchased at a temperature of 95°F is 32.9kg.

(d)

To determine

The amount of money did a consumer lose by buying gasoline on a very hot day.

(d)

Expert Solution
Check Mark

Answer to Problem 62PQ

The amount of money did a consumer lose by buying gasoline on a very hot day is 54cents.

Explanation of Solution

Since the consumer spent $30 for the 12 gallons of fuel, but on the hot day received 0.6 kg less compared to the 33.5 kg expected or 1.8% less.

Conclusion:

Hence, they lost about 1.8% of the $30 gas bill about 54cents.

Therefore, the amount of money did a consumer lose by buying gasoline on a very hot day is 54cents.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rate at which a resting person converts food energy is called one’s basal metabolic rate (BMR). Assume that the resulting internal energy leaves a person’s body by radiation and convection of dry air. When you jog, most of the food energy you burn above your BMR becomes internalenergy that would raise your body temperature if it were not eliminated. Assume that evaporation of perspiration is the mechanism for eliminating this energy. Suppose a person is jogging for “maximum fat burning,” converting food energy at the rate 400 kcal/h above his BMR, and putting out energy by work at the rate 60.0 W. Assume that the heat of evaporation of water at body temperature is equal to its heat of vaporization at 100°C. (a) Determine the hourly rate at which water must evaporate from his skin. (b) When you metabolize fat, the hydrogen atoms in the fat molecule are transferred to oxygen to form water. Assume that metabolism of 1.00 g of fat generates 9.00 kcal of energy and produces 1.00 g of…
Compressed air can be pumped underground into huge caverns as a form of energy storage. The volume of a cavern is 6.3 x 105 m³, 5 and the pressure of the air in it is 7.4 × 106 Pa. Assume that air is a diatomic ideal gas whose internal energy U is given by U = nRT. If one home uses 30.0 kWh of energy per day, how many homes could this internal energy serve for one day?
Carrie is trying to figure out the number of calories in a cube of cheese. To do this, she pours 166.2 mL of water into an aluminum can suspended from a ring stand. She takes the temperature of the water, and finds it to be 19.1 degrees Celsius. Then, she places the 5.23 gram cube of cheese under the can and lights it on fire! While the cheese is burning and for a few minutes after it is done, Carrie records the temperature of the water, finding that it levels out at 45.4 degrees Celsius. How many calories of heat were gained by the water? Please answer to the nearest 0.1 calorie.

Chapter 19 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 19 - Prob. 4PQCh. 19 - Prob. 5PQCh. 19 - Prob. 6PQCh. 19 - Prob. 7PQCh. 19 - Prob. 8PQCh. 19 - Object A is placed in thermal contact with a very...Ch. 19 - Prob. 10PQCh. 19 - Prob. 11PQCh. 19 - Prob. 12PQCh. 19 - Prob. 13PQCh. 19 - The tallest building in Chicago is the Willis...Ch. 19 - Prob. 15PQCh. 19 - Prob. 16PQCh. 19 - At 22.0C, the radius of a solid aluminum sphere is...Ch. 19 - Prob. 18PQCh. 19 - Prob. 19PQCh. 19 - Prob. 20PQCh. 19 - The distance between telephone poles is 30.50 m in...Ch. 19 - Prob. 22PQCh. 19 - Prob. 23PQCh. 19 - Prob. 24PQCh. 19 - Prob. 25PQCh. 19 - Prob. 26PQCh. 19 - Prob. 27PQCh. 19 - Prob. 28PQCh. 19 - Prob. 29PQCh. 19 - Prob. 30PQCh. 19 - Prob. 31PQCh. 19 - Prob. 32PQCh. 19 - Prob. 33PQCh. 19 - Prob. 34PQCh. 19 - Prob. 35PQCh. 19 - Prob. 36PQCh. 19 - Prob. 37PQCh. 19 - Prob. 38PQCh. 19 - Prob. 39PQCh. 19 - On a hot summer day, the density of air at...Ch. 19 - Prob. 41PQCh. 19 - Prob. 42PQCh. 19 - Prob. 43PQCh. 19 - Prob. 44PQCh. 19 - Prob. 45PQCh. 19 - Prob. 46PQCh. 19 - Prob. 47PQCh. 19 - A triple-point cell such as the one shown in...Ch. 19 - An ideal gas is trapped inside a tube of uniform...Ch. 19 - Prob. 50PQCh. 19 - Prob. 51PQCh. 19 - Case Study When a constant-volume thermometer is...Ch. 19 - An air bubble starts rising from the bottom of a...Ch. 19 - Prob. 54PQCh. 19 - Prob. 55PQCh. 19 - Prob. 56PQCh. 19 - Prob. 57PQCh. 19 - Prob. 58PQCh. 19 - Prob. 59PQCh. 19 - Prob. 60PQCh. 19 - Prob. 61PQCh. 19 - Prob. 62PQCh. 19 - Prob. 63PQCh. 19 - Prob. 64PQCh. 19 - Prob. 65PQCh. 19 - Prob. 66PQCh. 19 - Prob. 67PQCh. 19 - Prob. 68PQCh. 19 - Prob. 69PQCh. 19 - Prob. 70PQCh. 19 - Prob. 71PQCh. 19 - A steel plate has a circular hole drilled in its...Ch. 19 - Prob. 73PQCh. 19 - A gas is in a container of volume V0 at pressure...Ch. 19 - Prob. 75PQCh. 19 - Prob. 76PQCh. 19 - Prob. 77PQCh. 19 - Prob. 78PQCh. 19 - Prob. 79PQCh. 19 - Prob. 80PQCh. 19 - Two glass bulbs of volumes 500 cm3 and 200 cm3 are...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning