Concept explainers
A liquid has a density ρ. (a) Show that the fractional change in density for a change in temperature ΔT is Δρ/ρ = −β ΔT. (b) What does the negative sign signify? (c) Fresh water has a maximum density of 1.000 0 g/cm3 at 4.0°C. At 10.0°C, its density is 0.999 7 g/cm3. What is β for water over this temperature interval? (d) At 0°C, the density of water is 0.999 9 g/cm3. What is the value for β over the temperature range 0°C to 4.00°C?
(a)
To show: The fraction change in density for a change in temperature is given by
Answer to Problem 57AP
The fraction change in density for a change in temperature is
Explanation of Solution
Given info: The density of the liquid is
The expression for the coefficient of the volume expansion is,
Here,
The formula for the density is,
Here,
Differentiate the above equation with respect to volume.
For very small change in volume and density the expression is,
Substitute
Conclusion:
Therefore, the fraction change in density for a change in temperature is
(b)
The significance of the negative sign.
Answer to Problem 57AP
the negative sign signifies that when the temperature increases, the density decreases.
Explanation of Solution
Given info: The density of the liquid is
The expression for the fraction of the density is,
The negative sign in the above expression shows that as the temperature increases, the density of the water is decreases.
Conclusion:
Therefore, the negative sign signifies that when the temperature increases, the density decreases.
(c)
The value of
Answer to Problem 57AP
The value of
Explanation of Solution
Given info: The density of the liquid is
Recall the equation (1) and rearrange for
Substitute
Conclusion:
Therefore, the value of
(d)
The value of
Answer to Problem 57AP
The value of
Explanation of Solution
Given info: The density of the liquid is
The expression for
Substitute
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 19 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- How many cubic meters of helium are required to lift a balloon with a 400-kg payload to a height of 8 000 m? Take He = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression air = 0ez/8, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forward
- How many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a height of 8 000 m? Take Hc = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression pair = 0e-z/8 000, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardA sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forwardAt what temperature is the average speed of carbon dioxide molecules ( M=44.0 g/mol) 510 m/s?arrow_forward
- On a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forward(a) Show that the density of an ideal gas occupying a volume V is given by = PM/KT, where M is the molar mass. (b) Determine the density of oxygen gas at atmospheric pressure and 20.0C.arrow_forwardIf the average kinetic energy of the molecules in an ideal gas initially at 20C doubles, what is the final temperature of the gas? (5.6) (a) 10C (b) 40C (c) 313C (d) 586Carrow_forward
- A liquid with a coefficient of volume expansion just fills a spherical shell of volume V (Fig. P16.53). The shell and the open capillary of area A projecting from the top of the sphere are made of a material with an average coefficient of linear expansion . The liquid is free to expand into the capillary. Assuming the temperature increases by T, find the distance h the liquid rises in the capillary.arrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forwardOne process for decaffeinating coffee uses carbon dioxide ( M=44.0 g/mol) at a molar density of about 14,0 mol/m3 and a temperature of about 60 . (a) Is CO2 a solid, liquid, gas, or supercritical fluid under those conditions? (b) The van der Waals constants for carbon dioxide are a=0.3658 Pa m6/mol2 and b=4.286105 m3/mol. Using the van der Waals equation, estimate pressure of CO2 at that temperature and density. `arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning