Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 26P
To determine
The number of moles of gas that must be withdrawn.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rigid tank contains 1.50 moles of an ideal gas. Determine the number of moles of gas that must be withdrawn from the tank to lower the pressure of the gas from 25.0 atm to 5.00 atm. Assume the volume of the tank and the temperature of the gas remain constant during this operation.
The volume of an ideal gas is held constant. Determine the ratio P2/P1 of the final pressure to the initial pressure when the temperature of the gas rises (a) from 47 to 94 K and (b) from 25.8 to 62.4 oC.
Problem 5: n = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.094 m3.
Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas?
50% Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?
Chapter 19 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 19.1 - Prob. 19.1QQCh. 19.3 - Consider the following pairs of materials. Which...Ch. 19.4 - If you are asked to make a very sensitive glass...Ch. 19.4 - Prob. 19.4QQCh. 19.5 - A common material for cushioning objects in...Ch. 19.5 - On a winter day, you turn on your furnace and the...Ch. 19 - Prob. 1OQCh. 19 - Prob. 2OQCh. 19 - Prob. 3OQCh. 19 - Prob. 4OQ
Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Prob. 7OQCh. 19 - Prob. 8OQCh. 19 - Prob. 9OQCh. 19 - Prob. 10OQCh. 19 - Prob. 11OQCh. 19 - Prob. 12OQCh. 19 - Prob. 13OQCh. 19 - Prob. 14OQCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Metal lids on glass jars can often be loosened by...Ch. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 1PCh. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - Prob. 4PCh. 19 - Liquid nitrogen has a boiling point of 195.81C at...Ch. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - Prob. 8PCh. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - A copper telephone wire has essentially no sag...Ch. 19 - Prob. 12PCh. 19 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - Prob. 17PCh. 19 - Why is the following situation impossible? A thin...Ch. 19 - A volumetric flask made of Pyrex is calibrated at...Ch. 19 - Review. On a day that the temperature is 20.0C, a...Ch. 19 - Prob. 21PCh. 19 - Prob. 22PCh. 19 - Prob. 23PCh. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - In state-of-the-art vacuum systems, pressures as...Ch. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - Prob. 41PCh. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - The pressure gauge on a cylinder of gas registers...Ch. 19 - Prob. 45APCh. 19 - Prob. 46APCh. 19 - Prob. 47APCh. 19 - Prob. 48APCh. 19 - Prob. 49APCh. 19 - Why is the following situation impossible? An...Ch. 19 - Prob. 51APCh. 19 - Prob. 52APCh. 19 - Prob. 53APCh. 19 - Prob. 54APCh. 19 - A student measures the length of a brass rod with...Ch. 19 - Prob. 56APCh. 19 - A liquid has a density . (a) Show that the...Ch. 19 - Prob. 59APCh. 19 - Prob. 60APCh. 19 - The rectangular plate shown in Figure P19.61 has...Ch. 19 - Prob. 62APCh. 19 - Prob. 63APCh. 19 - Prob. 64APCh. 19 - Prob. 65APCh. 19 - Prob. 66APCh. 19 - Prob. 67APCh. 19 - Prob. 68APCh. 19 - Prob. 69APCh. 19 - Prob. 70APCh. 19 - Prob. 71APCh. 19 - Prob. 72CPCh. 19 - Prob. 73CPCh. 19 - Prob. 74CPCh. 19 - Prob. 75CPCh. 19 - Prob. 76CPCh. 19 - Prob. 77CPCh. 19 - Prob. 78CPCh. 19 - A 1.00-km steel railroad rail is fastened securely...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forwardCylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forward
- One mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardTwo containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forward
- An ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forwardThe mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forwardA gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forward
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardIn the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forwardOne cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY