College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 53GP
What is the angular resolution of the Hubble Space Tele-scope’s 2.4-m-diameter mirror when viewing light with a wavelength of 550 nm? The resolution of a reflecting telescope is calculated exactly the same as for a refracting telescope.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The primary mirror of the orbiting telescope has a diameter of 6.7 cm. being in orbit, this telescope avoids the degrading effects of atmospheric distortion on its resolution. Assuming an average light wavelength of 550 nm, what is the angle between two just-resolvable point light sources?
A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon.
(a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam?
(b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m ?
Diameter of the objective lens of a telescope is
250 cm. For light of wavelength 600 nm coming
from a distant object, the limit of resolution of the
telescope is close to what value?
Chapter 19 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 19 - On a sunny summer day, with the sun overhead, you...Ch. 19 - Suppose you have two pinhole cameras. The first...Ch. 19 - A photographer focuses his camera on his subject....Ch. 19 - The object for a magnifier is usually placed very...Ch. 19 - A nature photographer taking a close-up shot of an...Ch. 19 - The CCD detector in a certain camera has a width...Ch. 19 - All humans have what is known as a blind spot,...Ch. 19 - Suppose you wanted special glasses designed to...Ch. 19 - You have lenses with the following focal lengths:...Ch. 19 - An 8-year-old child and a 75-year-old man both use...
Ch. 19 - A friend lends you the eyepiece of his microscope...Ch. 19 - An astronomer is using a telescope to observe two...Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Is the wearer of the glasses in Figure Q19.14...Ch. 19 - Prob. 15CQCh. 19 - A collector notices a rare beetle on a tree 1.0 m...Ch. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - A person looking through a 10 D lens sees an image...Ch. 19 - Prob. 23MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - An older camera has a lens with a focal length of...Ch. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - a. Estimate the diameter of your eyeball. b. Bring...Ch. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Mary, like many older people, has lost all ability...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Rank the following people from the most...Ch. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - A magnifier has a magnification of 4 for someone...Ch. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - A farsighted man has a near point of 40 cm. What...Ch. 19 - An inexpensive microscope has a tube length of...Ch. 19 - A standard biological microscope is required to...Ch. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - The distance between the objective and eyepiece...Ch. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Your telescope has a 700-mm-focal-length objective...Ch. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 31PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Suppose you point a pinhole camera at a 15-m-tall...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 44GPCh. 19 - A 20 objective and 10 eyepiece give an angular...Ch. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 57GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
47. A block hangs in equilibrium from a vertical spring. When a second identical block is added, the original ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
3. In a test of his chromosome theory of heredity, Morgan crossed an F1 female Drosophila with red eyes to a m...
Genetic Analysis: An Integrated Approach (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. One week after full moon, the Moons ph...
Cosmic Perspective Fundamentals
21. Two shipwreck survivors were rescued from a life raft. One had drunk seawater while the other had not. The...
Introductory Chemistry (6th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the minimum diameter mirror on a telescope that would allow you to see details as small as 5.00 km on the moon some 384,000 km away? Assume an average wavelength of 550 nm for the light received.arrow_forwardAssuming the angular resolution found for the Hubble Telescope in Example 4.6, what is the smallest detail that could be observed on the moon?arrow_forward0. 35 : If the aperture of the objective of a telescope is decreased then its resolving power. (a) does not change increase (b) becomes infinity (c) (d) decreasesarrow_forward
- The primary mirror of the Hubble Space Telescope (HST) is approximately 2.4 m wide. What is the diffraction-limited angular resolution of HST when observing at a wavelength of 700 nm? Provide your answer in angular units of arseconds.arrow_forwardOne important goal of astronomers is to have a telescope in space that can resolve planets like the earth orbiting other stars. If a planet orbits its star at a distance of 1.5 x 1011 m (the radius of the earth’s orbit around the sun) and the telescope has a mirror of diameter 8.0 m, how far from the telescope could the star and its planet be if the wavelength used was (a) 690 nm and (b) 1400 nm? Use the Rayleigh criterion and give your answers in light-years (1 ly = 9.46 x 1015 m).arrow_forwardA telescope has a circular aperture of diameter D = 4.5 m. A light with wavelength λ = 670 nm travels through the telescope. Part (a) Express the limiting angle of resolution, θmin, in terms of λ and D. You may assume that θmin is very small. Part (b) Solve for the numerical value of θmin in degrees.arrow_forward
- Please Asaparrow_forwardEstimate the linear separation (in kilometers) of two objects at a distance of 1.9 × 10° km that can just be resolved by an observer on Earth (a) using the naked eye and (b) using a telescope with a 7.4-m diameter mirror. Use the following data: diameter of pupil = 5.0 mm; wavelength of light = 550 nm. %3D (a) Number i 2.5E8 Units km (b) Number i 1.7E5 Units kmarrow_forwardProblem 4: A telescope has a circular aperture of diameter D = 4.3 m. A light with wavelength λ = 550 nm travels through the telescope. Part (a) Express the limiting angle of resolution, θmin, in terms of λ and D. You may assume that θmin is very small. Part (b) Solve for the numerical value of θmin in degrees.arrow_forward
- A particular person's pupil is 4.5 mm in diameter, and the person's normal‑sighted eye is most sensitive at a wavelength of 552 nm. What is angular resolution ?R of the person's eye, in radians?arrow_forwardOften in optics scientists take advantage of effects that require very high intensity light. To get the desired effect a scientist uses a laser with power P = 0.0015 W to reach an intensity of I = 350 W/cm2 by focusing it through a lens of focal length f = 0.15 m. The beam has a radius of r = 0.0011 m when it enters the lens.Randomized VariablesP = 0.0015 WI = 350 W/cm2f = 0.15 mr = 0.0011 m Part (a) Express the radius of the beam, rp, at the point where it reaches the desired intensity in terms of the given quantities. (In other words, what radius does the beam have to have after passing through the lens in order to have the desired intensity?) Part (b) Give an expression for the tangent of the angle that the edge of the beam exits the lens with with respect to the normal to the lens surface, in terms of r and f? Part (c) Express the distance, D, between the lens's focal point and the illuminated object using tan(α) and rp. Part (d) Find the distance, D, in centimeters.arrow_forwardWhat diameter telescope (in m) would you need to observe Olympus Mons (624 km in diameter) from Earth at a wavelength of 550 nm when Mars is 3.35 ✕ 108 km away?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY