PHYSICAL SCIENCE (LCPO)
12th Edition
ISBN: 9781265774660
Author: Tillery
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 41AC
Which isnot a type of fault?
a. Normal
b. Reverse
c. Thrust
d. Forward
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
need help on first part
its not 220
No chatgpt pls will upvote
No chatgpt pls
Chapter 19 Solutions
PHYSICAL SCIENCE (LCPO)
Ch. 19 - 1. The premise that the present is the key to...Ch. 19 - 2. The concept of uniformitarianism is that rocks...Ch. 19 - 3. A force that compresses, pulls apart, or...Ch. 19 - 4. Rock stress caused by two plates moving...Ch. 19 - 5. Adjustment to stress is defined as
a....Ch. 19 - 6. Rocks at great depths are under
a. lower...Ch. 19 - 7. A bend in layered bedrock that resulted from...Ch. 19 - 8. Folds that resemble an arch are called
a....Ch. 19 - 9. A fold that forms a trough is called a (an)
a....Ch. 19 - 10. Movement between rocks on one side of a...
Ch. 19 - 11. The actual place where seismic waves originate...Ch. 19 - 12. The point on Earth's surface directly above...Ch. 19 - 13. An earthquake that occurs in the upper part of...Ch. 19 - 14. The majority of earthquakes (85 percent)...Ch. 19 - 15. The size of an earthquake is measured by
a....Ch. 19 - 16. The energy of the vibrations or the magnitude...Ch. 19 - 17. Earthquakes are detected and measured by
a. a...Ch. 19 - 18. Elevated parts of Earth’s crust that rise...Ch. 19 - 19. Which of the following is not a classification...Ch. 19 - 20. Mountains that rise sharply from surrounding...Ch. 19 - 21. A large amount of magma that has crystallized...Ch. 19 - 22. The most abundant extrusive rock is
a....Ch. 19 - 23. The basic difference between the frame of...Ch. 19 - 24. The difference between elastic deformation and...Ch. 19 - 25. Whether a rock layer subjected to stress...Ch. 19 - 26. When subjected to stress, rocks buried at...Ch. 19 - 27. A sedimentary rock layer that has not been...Ch. 19 - 28. The difference between a joint and a fault is...Ch. 19 - 29. A fault where the footwall has moved upward...Ch. 19 - 30. Reverse faulting probably resulted from which...Ch. 19 - 31. Earthquakes that occur at the boundary between...Ch. 19 - 32. Each higher number of the Richter scale
a....Ch. 19 - 33. The removal of “older” crust from the surface...Ch. 19 - 34. Hutton observed that rocks, rock structures,...Ch. 19 - 35. The principle of uniformity has a basic frame...Ch. 19 - 36. What is not considered a type of strain?
a....Ch. 19 - 37. How a rock responds to stress and strain does...Ch. 19 - 38. Which rock is more likely to break under...Ch. 19 - 39. Rocks near or on the surface
a. are not cooler...Ch. 19 - 40. Rocks recover their original shape after...Ch. 19 - 41. Which is not a type of fault?
a. Normal
b....Ch. 19 - 42. Where do most earthquakes occur?
a. Along...Ch. 19 - 43. The name of the fault that is of concern to...Ch. 19 - 44. P-waves travel ____ S-waves.
a. faster than
b....Ch. 19 - Prob. 45ACCh. 19 - 46. An earthquake is
a. the result of the sudden...Ch. 19 - 47. The Black Hills in South Dakota and the...Ch. 19 - 48. The Appalachian Mountains were formed when
a....Ch. 19 - 49. Mountains that were formed as a result of...Ch. 19 - 50. The source of magma for the Mount St. Helens...Ch. 19 - 1. What is the principle of uniformity? What are...Ch. 19 - 2. Describe the responses of rock layers to...Ch. 19 - Prob. 3QFTCh. 19 - 4. What does the presence of folded sedimentary...Ch. 19 - 5. Describe the conditions that would lead to...Ch. 19 - 6. How would plate tectonics explain the...Ch. 19 - 7. What is an earthquake? What produces an...Ch. 19 - 8. Where would the theory of plate tectonics...Ch. 19 - 9. Describe how the location of an earthquake is...Ch. 19 - 10. Briefly explain how and where folded mountains...Ch. 19 - 11. The magnitude of an earthquake is measured on...Ch. 19 - 12. Identify three areas of probable volcanic...Ch. 19 - Prob. 13QFTCh. 19 - 14. Describe any possible relationships between...Ch. 19 - 15. What is the source of magma that forms...Ch. 19 - 16. Describe how the nature of the lava produced...Ch. 19 - 17. What are mountains? Why do they tend to form...Ch. 19 - 1. Evaluate the statement “the present is the key...Ch. 19 - Prob. 2FFACh. 19 - 3. What are the significant similarities and...Ch. 19 - 4. Explain the combination of variables that...Ch. 19 - Prob. 1IICh. 19 - Prob. 2IICh. 19 - Prob. 3IICh. 19 - Prob. 4IICh. 19 - Prob. 5IICh. 19 - Prob. 1PEACh. 19 - Prob. 2PEACh. 19 - Prob. 3PEACh. 19 - Prob. 4PEACh. 19 - Prob. 5PEACh. 19 - Prob. 6PEACh. 19 - Prob. 7PEACh. 19 - Prob. 8PEACh. 19 - Prob. 9PEACh. 19 - Prob. 10PEACh. 19 - Prob. 11PEACh. 19 - How wide, in kilometers, is a shield volcano...Ch. 19 - Prob. 13PEACh. 19 - Prob. 14PEACh. 19 - Prob. 15PEACh. 19 - Prob. 16PEACh. 19 - 1. The rocks in a syncline have been folded into a...Ch. 19 - Prob. 2PEBCh. 19 - Prob. 3PEBCh. 19 - 4. The hanging wall of a fault has been displaced...Ch. 19 - Prob. 5PEBCh. 19 - Prob. 6PEBCh. 19 - Prob. 7PEBCh. 19 - 8. Compare the ground motion (surface wave...Ch. 19 - Prob. 10PEBCh. 19 - Prob. 11PEBCh. 19 - Prob. 12PEBCh. 19 - Prob. 13PEBCh. 19 - Prob. 14PEBCh. 19 - Prob. 15PEBCh. 19 - Prob. 16PEB
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
Describe the role and impact of microbes on the earth.
Microbiology Fundamentals: A Clinical Approach
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Describe the evolution of mammals, tracing their synapsid lineage from early amniote ancestors to true mammals....
Loose Leaf For Integrated Principles Of Zoology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forwardNo chatgpt plsarrow_forward
- need help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forward
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY