Concept explainers
(a)
Interpretation:
The balanced chemical equation for the oxidation of
Concept introduction:
In an
If oxidation takes place on an electrode, that electrode is called anode. The species in that electrode remove electrons and itself gets oxidized.
If reduction takes place on an electrode, that electrode is called cathode. The species in that electrode absorbs electrons and itself gets reduced.
The electrode potential of cell can be calculated as follows:
Nernst equation for a cell can be represented as follows:
Here,
z = number of moles of electrons transferred in the cell and Q is ratio of concentration of products to reactant in a cell.
If E cell is positive, a reaction occurs spontaneously in the forward direction for the stated conditions.
If E cell is negative, the reaction occurs spontaneously in the reverse direction for the stated conditions.
If the E cell = 0 reaction is at equilibrium for the stated conditions.
(b)
Interpretation:
The balanced chemical equation for the oxidation of
Concept introduction:
In an electrochemical cell, there are two electrodes that can be observed.
If oxidation takes place on an electrode, that electrode is called anode. The species in that electrode remove electrons and itself gets oxidized.
If reduction takes place on an electrode, that electrode is called cathode. The species in that electrode absorbs electrons and itself gets reduced.
The electrode potential of cell can be calculated as follows:
Nernst equation for a cell can be represented as follows:
Here,
z = number of moles of electrons transferred in the cell and Q is ratio of concentration of products to reactant in a cell.
If E cell is positive, a reaction occurs spontaneously in the forward direction for the stated conditions.
If E cell is negative, the reaction occurs spontaneously in the reverse direction for the stated conditions.
If the E cell = 0 reaction is at equilibrium for the stated conditions.
(c)
Interpretation:
The balanced chemical equation for the oxidation of
Concept introduction:
From pH of a solution, the concentration of hydrogen ion can be calculated as follows:
Here,
In an electrochemical cell, there are two electrodes that can be observed.
If oxidation takes place on an electrode, that electrode is called anode. The species in that electrode remove electrons and itself gets oxidized.
If reduction takes place on an electrode, that electrode is called cathode. The species in that electrode absorbs electrons and itself gets reduced.
The electrode potential of cell can be calculated as follows:
Nernst equation for a cell can be represented as follows:
Here,
z = number of moles of electrons transferred in the cell and Q is ratio of concentration of products to reactant in a cell.
If E cell is positive, a reaction occurs spontaneously in the forward direction for the stated conditions.
If E cell is negative, the reaction occurs spontaneously in the reverse direction for the stated conditions.
If the E cell = 0 reaction is at equilibrium for the stated conditions.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
EBK GENERAL CHEMISTRY
- Q1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. OH HO CI Br H CI CI Br CI CI Xf x f g Br D OH Br Br H₂N R. IN Ill I -N S OMe D II H CO₂H 1/111 DuckDuckGarrow_forwardThese are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned. Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. If a racemic molecule is made along the way, you need to draw both enantiomers and label the mixture as "racemic". All of the carbon atoms of the products must come from the starting material! ? H Harrow_forwardQ5: Draw every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane. Clearly show stereochemistry by drawing the wedge-and-dashed bonds. Describe the relationship between each pair of the stereoisomers you have drawn.arrow_forward
- Classify each pair of molecules according to whether or not they can participate in hydrogen bonding with one another. Participate in hydrogen bonding CH3COCH3 and CH3COCH2CH3 H2O and (CH3CH2)2CO CH3COCH3 and CH₂ CHO Answer Bank Do not participate in hydrogen bonding CH3CH2OH and HCHO CH3COCH2CH3 and CH3OHarrow_forwardNonearrow_forwardQ4: Comparing (3S,4S)-3,4-dimethylhexane and (3R,4S)-3,4-dimethylhexane, which one is optically active? Briefly explain.arrow_forward
- Nonearrow_forwardNonearrow_forwardGiven the standard enthalpies of formation for the following substances, determine the reaction enthalpy for the following reaction. 4A (g) + 2B (g) → 2C (g) + 7D (g) AHrxn =?kJ Substance AH in kJ/mol A (g) - 20.42 B (g) + 32.18 C (g) - 72.51 D (g) - 17.87arrow_forward
- Determine ASran for Zn(s) + 2HCl(aq) = ZnCl2(aq) + H2(aq) given the following information: Standard Entropy Values of Various Substance Substance So (J/mol • K) 60.9 Zn(s) HCl(aq) 56.5 130.58 H2(g) Zn2+(aq) -106.5 55.10 CI (aq)arrow_forward3) Catalytic hydrogenation of the compound below produced the expected product. However, a byproduct with molecular formula C10H12O is also formed in small quantities. What is the by product?arrow_forwardWhat is the ΔHorxn of the reaction? NaOH(aq) + HCl(aq) → H2O(l) + NaCl(aq) ΔHorxn 1= ________ kJ/molarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning