
Concept explainers
(a)
Interpretation:
The electronic configuration for metal ion
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated gaseous state. Electrons are filled in order of the increasing energies of the various sublevels.

Answer to Problem 32QAP
The electronic configuration for Cd2+ is
Explanation of Solution
Cadmium is a 4d
When it two electrons this leads to the formation of Cd2+ cation, and its electronic configuration becomes:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
(b)
Interpretation:
The electronic configuration for metal ion
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel.When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated gaseous state. Electrons are filled in order of the increasing energies of the various sublevels.
Atomic number of an element gives the total number of electrons present in an atom. In case of transition metal cations, the electrons that are present beyond the noble gas are located in their inner d- orbitals (3d orbitals in case of 3d transition metal elements), this means that they have no outer s- electrons and the distribution of electrons is according to Hund’s rule which states that when orbitals of equal energy are available, then electrons enter singly in the respective orbitals, this gives rise to maximum number of unpaired electrons in transition metal cations.

Answer to Problem 32QAP
The electronic configuration for Fe2+ is
Explanation of Solution
Iron is a 3d transition metal element and its atomic number is 26. Its electronic configuration can be written as follows:
When it two electrons this leads to the formation of Fe2+ cation, and its electronic configuration becomes:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal. It states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly, lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
(c)
Interpretation:
The electronic configuration for metal ion
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated gaseous state. Electrons are filled in order of the increasing energies of the various sublevels.
Atomic number of an element gives the total number of electrons present in an atom. In case of transition metal cations, the electrons that are present beyond the noble gas are located in their inner d- orbitals (3d orbitals in case of 3d transition metal elements), this means that they have no outer s- electrons and the distribution of electrons is according to Hund’s rule which states that, when orbitals of equal energy are available, then electrons enter singly in the respective orbitals, this gives rise to maximum number of unpaired electrons in transition metal cations.

Answer to Problem 32QAP
Theelectronic configuration for Pt2+ is
Explanation of Solution
Platinum is a 5d transition metal element and its atomic number is 78. Its electronic configuration can be written as follows:
When it two electrons this leads to the formation of Pt2+ cation, and its electronic configuration becomes:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal. It states that, when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
(d)
Interpretation:
The electronic configuration for metal ion
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated gaseous state. Electrons are filled in order of the increasing energies of the various sublevels.
Atomic number of an element gives the total number of electrons present in an atom. In case of transition metal cations, the electrons that are present beyond the noble gas are located in their inner d- orbitals (3d orbitals in case of 3d transition metal elements), this means that they have no outer s- electrons and the distribution of electrons is according to Hund’s rule. It states that when orbitals of equal energy are available, then electrons enter singly in the respective orbitals, which gives rise to maximum number of unpaired electrons in transition metal cations.

Answer to Problem 32QAP
The electronic configuration forMn2+ is
Explanation of Solution
Manganese is a 3d transition metal element and its atomic number is 25. Its electronic configuration can be written as follows:
When it two electrons this leads to the formation of Mn2+ cation, and its electronic configuration becomes:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal. It states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly, lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
(e)
Interpretation:
The electronic configuration for metal ion
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. When the electronic configuration of an atom is written, it describes the number of electrons present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated gaseous state. Electrons are filled in order of the increasing energies of the various sublevels.
Atomic number of an element gives the total number of electrons present in an atom. In case of transition metal cations, the electrons that are present beyond the noble gas are located in their inner d- orbitals (3d orbitals in case of 3d transition metal elements), this means that they have no outer s- electrons and the distribution of electrons is according to Hund’s rule which states that when orbitals of equal energy are available, then electrons enter singly in the respective orbitals. This gives rise to maximum number of unpaired electrons in transition metal cations.

Answer to Problem 32QAP
The electronic configuration forNi3+ is
Explanation of Solution
Nickel is a 3d transition metal element and its atomic number is 28. Its electronic configuration can be written as follows:
When it three electrons it leads to the formation of Ni3+ cation, and its electronic configuration becomes:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal. It states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly, lower energy orbitals are filled, and then filling of higher energy orbitals takes place.
Want to see more full solutions like this?
Chapter 19 Solutions
Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th
- if the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardreciprocal lattices rotates along with the real space lattices of the crystal. true or false?arrow_forwardDeducing the reactants of a Diels-Alder reaction vn the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ O If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Click and drag to start drawing a structure. Product can't be made in one step. Explanation Checkarrow_forward
- Predict the major products of the following organic reaction: Δ ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. Larrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accesarrow_forwardPredict the major products of the following organic reaction: O O + A ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. eserved. Terms of Use | Privacy Center >arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
