Operations Management
Operations Management
13th Edition
ISBN: 9781259667473
Author: William J Stevenson
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 2P

a)

Summary Introduction

To solve: The linear programming problem and answer the questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

a)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Minimize Z=1.80S+2.20TSubject to:5S+8T200gr(Potassium)15S+6T240gr(Carbohydrate)4S+12T180gr(Protein)T10gr(T)S,T0(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

5S+8T200gr(Potassium)

Substituting S=0 to find T,

5(0)+8T=2008T=200T=2008T=25

Substituting T=0 to find S,

5S+8(0)=2005S=200S=2005S=40

Constraint 2:

15S+6T240gr(Carbohydrate)

Substituting S=0 to find T,

15(0)+6T=2406T=240T=2406T=40

Substituting T=0 to find S,

15S+6(0)=24015S=240S=24015S=16

Constraint 3:

4S+12T180gr(Protein)

Substituting S=0 to find T,

4(0)+12T=18012T=180T=18012T=15

Substituting T=0 to find S,

4S+12(0)=1804S=180S=1804S=45

Constraint 4:

T10gr(T)

Therefore T=10.

Objective function:

The problem is solved with iso-cost line method.

Let 1.80S+2.20T=99

Substituting S=0 to find T,

1.80(0)+2.20T=992.20T=99T=992.20T=45

Substituting T=0 to find S,

1.80S+2.20(0)=991.80S=99S=991.80S=55

Graph:

Operations Management, Chapter 19, Problem 2P , additional homework tip  1

(1) Optimal value of the decision variables and Z:

The coordinates for the cost line is (45, 55). The cost line is moved towards the origin. The lowest at which the cost line intersects in the feasible region will be the optimum solution. The following equation are solved as simultaneous equation to find optimum solution.

5S+8T=200 (1)

15S+6T=240 (2)

Solving (1) and (2) we get,

S=8,T=20

The values are substituted in the objective function to find the objective function value.

Minimize Z=1.80(8)+2.20(20)=14.40+44=58.40

Optimal solution:

S=8T=20Z=58.4

(2)

None of the constraints are having slack. All ≤ constraints are binding.

(3)

Protein and T constraint have surplus.

Protein:

4(8)+12(20)180gr32+240180272180

The surplus is 92 (272 – 180).

T:

T102010

The surplus is 10 (20– 10).

(4)

The protein constraint is redundant because, it does not intersect at any point in the feasible region.

b)

Summary Introduction

To solve: The linear programming problem and answer the questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

b)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Minimize Z=2x1+3x2Subject to:4x1+2x220(D)2x1+6x218(E)x1+2x212(F)x1,x20(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

4x1+2x220(D)

Substituting x1=0 to find x2,

4(0)+2x2=202x2=20x2=202x2=10

Substituting x2=0 to find x1,

4x1+2(0)=204x1=20x1=204x1=5

Constraint 2:

2x1+6x218(E)

Substituting x1=0 to find x2,

2(0)+6x2=186x2=18x2=186x2=3

Substituting x2=0 to find x1,

2x1+6(0)=182x1=18x1=182x1=9

Constraint 3:

x1+2x212(F)

Substituting x1=0 to find x2,

(0)+2x2=122x2=12x2=122x2=6

Substituting x2=0 to find x1,

x1+2(0)=12x1=12x1=121x1=12

Objective function:

The problem is solved with iso-cost line method.

Let 2x1+3x2=24

Substituting x1=0 to find x2,

2(0)+3x2=243x2=24x2=243x2=8

Substituting x2=0 to find x1,

2x1+3(0)=242x1=24x1=242x1=12

Graph:

Operations Management, Chapter 19, Problem 2P , additional homework tip  2

(1) Optimal value of the decision variables and Z:

The coordinates for the cost line is (12, 8). The cost line is moved towards the origin. The lowest at which the cost line intersects in the feasible region will be the optimum solution. The following equation are solved as simultaneous equation to find optimum solution.

4x1+2x2=20 (1)

2x1+6x2=18 (2)

Solving (1) and (2) we get,

x1=4.2,x2=1.6

The values are substituted in the objective function to find the objective function value.

Minimize Z=2(4.2)+3(1.6)=8.4+4.8=13.2

Optimal solution:

x1=4.2x2=1.6Z=13.2

(2)

Constraint F is having slack as shown below.

(4.2)+2(1.6)124.2+3.2127.412

The slack is 4.6 (12 – 7.4).

(3)

There are no surplus. D and E constraints with ≥ are binding.

(4)

There are no redundant constraints

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Use the minimax regret and Hurwics (α=0.8) to assist Susan with her decision
apply appropriate techniques to solve a range of models of mathematical and real-world problems analyse the effects of changing model parameters on LP model predictions * select and develop appropriate mathematical models for decision making problems (a) A stationary supplies company wishes to produce deluxe and budget ink pens. Deluxe ink pens require eight units of material and 9 minutes to produce each pen. Budget ink pens require six units of material and 4 minutes to produce each pen. The company has 38.25 hours of labour and 1950 units of material available per week. Profit for deluxe ink pens is $2.40 per pen and for budget ink pens is $1.75 per pen. The company also wants the number of deluxe ink pens to be produced to be at least 6 times the number of budget ink pens produced. Formulate a Linear Programming problem to determine the company's best production plan to maximise profit (do not solve). (b) Solve the following Linear Programming problem using the Simplex Method. Full…
An electronics factory operates on four production lines: laptops, mobiles, desktop computers, smart boards, and there were three cases of demand (weak, medium, and high), and the matrix of returns was as follows: Laptops Mobiles Risk Desktop Computers Smart Boards High 40 45 35 30 Economic state Medium 25 15 30 20 1. The problem presented above is decision-making under Certainty Uncertainty Weak 10 5 -10 -5 Save All Answers Save and Submit
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,