Operations Management
Operations Management
13th Edition
ISBN: 9781259667473
Author: William J Stevenson
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 1P

a)

Summary Introduction

To solve: The linear programming problem and answer the given questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

a)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Maximize Z=4x1+3x2Subject to:6x1+4x248lb(Material)4x1+8x280hr(Labor)x1,x20(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

6x1+4x248lb(Material)

Substituting x1=0 to find x2,

6(0)+4x2=484x2=48x2=484x2=12

Substituting x2=0 to find x1,

6x1+4(0)=486x1=48x1=486x1=8

Constraint 2:

4x1+8x280hr(Labor)

Substituting x1=0 to find x2,

4(0)+8x2=808x2=80x2=808x2=10

Substituting x2=0 to find x1,

4x1+8(0)=804x1=80x1=804x1=20

Objective function:

The problem is solved with iso-profit line method.

Let 4x1+3x2=24

Substituting x1=0 to find x2,

4(0)+3x2=243x2=24x2=243x2=8

Substituting x2=0 to find x1,

4x1+3(0)=244x1=24x1=244x1=6

Graph:

Operations Management, Chapter 19, Problem 1P , additional homework tip  1

(1) Optimal value of the decision variables and Z:

The coordinates for the profit line is (6, 8). The profit line is moved away from the origin. The highest point at which the profit line intersects in the feasible region will be the optimum solution. The following equation are solved as simultaneous equation to find optimum solution.

6x1+4x2=48 (1)

4x1+8x2=80 (2)

Solving (1)and (2)we get,

x1=2,x2=9

The values are substituted in the objective function to find the objective function value.

Maximize Z=4(2)+3(9)=8+27=35

Optimal solution:

x1=2x2=9Z=35

(2)

None of the constraints are having slack. Both the ≤ constraints are binding.

(3)

There are no ≥ constraints. Hence, none of the constraints have surplus.

(4)

There are no redundant constraints.

b)

Summary Introduction

To solve: The linear programming problem and answer the questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

b)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Maximize Z=2x1+10x2Subject to:10x1+4x240wk(Durability)x1+6x224psi(Strength)x1+2x214hr(Time)x1,x20(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

10x1+4x240wk(Durability)

Substituting x1=0 to find x2,

10(0)+4x2=404x2=40x2=404x2=10

Substituting x2=0 to find x1,

10x1+4(0)=4010x1=40x1=4010x1=4

Constraint 2:

x1+6x224psi(Strength)

Substituting x1=0 to find x2,

(0)+6x2=246x2=24x2=246x2=4

Substituting x2=0 to find x1,

x1+6(0)=24x1=24x1=241x1=24

Constraint 3:

x1+2x214hr(Time)

Substituting x1=0 to find x2,

(0)+2x2=142x2=14x2=142x2=7

Substituting x2=0 to find x1,

x1+2(0)=14x1=14x1=141x1=14

Objective function:

The problem is solved with iso-profit line method.

Let 2x1+10x2=20

Substituting x1=0 to find x2,

2(0)+10x2=2010x2=20x2=2010x2=2

Substituting x2=0 to find x1,

2x1+10(0)=202x1=20x1=202x1=10

Graph:

Operations Management, Chapter 19, Problem 1P , additional homework tip  2

(1) Optimal value of the decision variables and Z:

The coordinates for the profit line is (10, 2). The profit line is moved away from the origin. The highest point at which the profit line intersects in the feasible region will be the optimum solution. The following equations are solved as simultaneous equation to find optimum solution.

10x1+4x2=40 (1)

x1+2x2=14 (2)

Solving (1)and (2)we get,

x1=1.5,x2=6.25

The values are substituted in the objective function to find the objective function value.

Maximize Z=2(1.5)+10(6.25)=3+62.5=65.5

Optimal solution:

x1=1.5x2=6.25Z=65.5

(2)

None of the constraints are having slack. The time constraint has ≤ and it is binding.

(3)

Durability and strength constraints have ≥ in them. The durability constraint is binding and has no surplus. The strength constraint has surplus as shown below:

(1.5)+6(6.25)241.5+37.5243924

The surplus is 15 (39 -24).

(4)

There are no redundant constraints.

c)

Summary Introduction

To solve: The linear programming problem and answer the questions.

Introduction:

Linear programming:

Linear programming is a mathematical modelling method where a linear function is maximized or minimized taking into consideration the various constraints present in the problem. It is useful in making quantitative decisions in business planning.

c)

Expert Solution
Check Mark

Explanation of Solution

Given information:

Maximize Z=6A+3BSubject to:20A+6B600lb(Material)25A+20B1,000hr(Machinery)20A+30B1,200(Labor)A,B0(Nonnegativity)

Calculation of coordinates for each constraint and objective function:

Constraint 1:

20A+6B600lb(Material)

Substituting A=0 to find B,

20(0)+6B=6006B=600B=6006B=100

Substituting B=0 to find A,

20A+6(0)=60020A=600A=60020A=30

Constraint 2:

25A+20B1,000hr(Machinery)

Substituting A=0 to find B,

25(0)+20B=1,00020B=1,000B=1,00020B=50

Substituting B=0 to find A,

25A+20(0)=1,00025A=1,000A=1,00025A=40

Constraint 3:

20A+30B1,200

Substituting A=0 to find B,

20(0)+30B=1,20030B=1,200B=1,20030B=40

Substituting B=0 to find A,

20A+30(0)=1,20020A=1,200A=1,20020A=60

Objective function:

The problem is solved with iso-profit line method.

Let6A+3B=120

Substituting A=0 to find B,

6(0)+3B=1203B=120B=1203B=40

Substituting B=0 to find A,

6A+3(0)=1206A=120A=1206A=20

Graph:

Operations Management, Chapter 19, Problem 1P , additional homework tip  3

(1) Optimal value of the decision variables and Z:

The coordinates for the profit line is (20, 40). The profit line is moved away from the origin. The highest point at which the profit line intersects in the feasible region will be the optimum solution. The following equation are solved as simultaneous equation to find optimum solution.

20A+6B=600 (1)

25A+20B=1,000 (2)

Solving (1) and (2) we get,

A=24,B=20

The values are substituted in the objective function to find the objective function value.

Maximize Z=6(24)+3(20)=144+60=204

Optimal solution:

A=24B=20Z=204

(2)

The material and machinery constraint has ≤ and it is binding and has zero slack. The labor constraint has slack as shown below:

20(24)+30(20)1,200480+6001,2001,0801,200

The slack is 120 (1,200 – 1,080).

(3)

There are no constraints with ≥. Hence, no constraints have surplus.

(4)

There are no redundant constraints

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Excel Please. The workload of many areas of banking operations varies considerably based on time of day.  A variable capacity can be achieved effectively by employing part-time personnel.  Because part-timers are not entitled to all the fringe benefits, they are often more economical than full-time employees.  Other considerations, however, may limit the extent to which part-time people can be hired in a given department.  The problem is to find an optimal workforce schedule that would meet personnel requirements at any given time and also be economical.   Some of the factors affecting personnel assignments are listed here:   The bank is open from 9:00am to 7:00pm. Full-time employees work for 8 hours (1 hour for lunch included) per day. They do not necessarily have to start their shift when the bank opens. Part-time employees work for at least 4 hours per day, but less than 8 hours per day and do not get a lunch break. By corporate policy, total part-time personnel hours is limited…
IM.84 An outdoor equipment manufacturer sells a rugged water bottle to complement its product line. They sell this item to a variety of sporting goods stores and other retailers. The manufacturer offers quantity discounts per the following discount schedule: Option Plan Quantity Price A 1 - 2,399 $5.50 B 2,400 - 3,999 $5.20 C 4,000+ $4.50 A large big-box retailer expects to sell 9,700 units this year. This retailer estimates that it incurs an internal administrative cost of $225 each time it places an order with the manufacturer. Holding cost for the retailer is $55 per case per year. (There are 40 units or water bottles per case.) Based on this information, and not taking into account any quantity discount offers, what is the calculated EOQ (in units)? (Display your answer to the nearest whole number.) Number Based on this information, sort each quantity discount plan from left to right by dragging the MOST preferred option plan to the left, and the LEAST preferred…
In less than 150 words, what is an example of what your reflection of core values means to you and your work: Commitment, Perseverance, Community, Service, Pride?
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,