In Exercises 25-28, determine if the specified linear transformation is (a) one-to-one and (b) onto. Justify each answer.
28. The transformation in Exercise 14
14. Let T : ℝ2 → ℝ2 be a linear transformation with standard matrix A = [a1 a2], where a1 and a2 are shown in the figure. Using the figure, draw the image of
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Thomas' Calculus and Linear Algebra and Its Applications Package for the Georgia Institute of Technology, 1/e
Additional Math Textbook Solutions
Graphical Approach To College Algebra
Intermediate Algebra (7th Edition)
Elementary and Intermediate Algebra
College Algebra (7th Edition)
Introductory and Intermediate Algebra for College Students (5th Edition)
A Graphical Approach to College Algebra (6th Edition)
- Let T be a linear transformation from R2 into R2 such that T(4,2)=(2,2) and T(3,3)=(3,3). Find T(7,2).arrow_forwardIn Exercises 3-6, prove that the given transformation is a linear transformation, using the definition (or the Remark following Example 3.55). 6.arrow_forwardFor the linear transformation from Exercise 38, find a T(0,1,0,1,0), and b the preimage of (0,0,0), c the preimage of (1,1,2). Linear Transformation Given by a Matrix In Exercises 33-38, define the linear transformation T:RnRmby T(v)=Av. Find the dimensions of Rnand Rm. A=[020201010112221]arrow_forward
- Let T be a linear transformation T such that T(v)=kv for v in Rn. Find the standard matrix for T.arrow_forwardUse the standard matrix for counterclockwise rotation in R2 to rotate the triangle with vertices (3,5), (5,3) and (3,0) counterclockwise 90 about the origin. Graph the triangles.arrow_forward1. Let Ta : ℝ2 → ℝ2 be the matrix transformation corresponding to . Find , where and .arrow_forward
- Find the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forwardFor the linear transformation from Exercise 33, find a T(1,1), b the preimage of (1,1), and c the preimage of (0,0). Linear Transformation Given by a Matrix In Exercises 33-38, define the linear transformations T:RnRm by T(v)=Av. Find the dimensions of Rn andRm. A=[0110]arrow_forwardFor the linear transformation from Exercise 37, find a T(1,0,2,3), and b the preimage of (0,0,0). Linear Transformation Given by a Matrix In Exercises 33-38, define the linear transformations T:RnRm by T(v)=Av. Find the dimensions of Rn and Rm. A=[012114500131]arrow_forward
- Let T:P2P3 be the linear transformation T(p)=xp. Find the matrix for T relative to the bases B={1,x,x2} and B={1,x,x2,x3}.arrow_forwardLet T:RnRm be the linear transformation defined by T(v)=Av, where A=[30100302]. Find the dimensions of Rn and Rm.arrow_forwardLet T:P2P4 be the linear transformation T(p)=x2p. Find the matrix for T relative to the bases B={1,x,x2} and B={1,x,x2,x3,x4}.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage