
(a)
Interpretation: The given
Concept Introduction: When an atom on undergoing radioactive decay emits an alpha particle (helium nucleus, 42He) from the nucleus of an atom, then such type of radioactive decays is said to be alpha decay.
(a)

Answer to Problem 22QAP
Explanation of Solution
Given:
When an atom on undergoing radioactive decay emits an alpha particle (helium nucleus, 42He) from the nucleus of an atom, then such type of radioactive decays is said to be alpha decay.
The general reaction for alpha decay is:
Where A is mass number, Z is
The given atom is At-196.
The atomic number of At is 85. The alpha emission will result in decrease in number of protons by 2 so, the number of protons of the element formed from beta emission of At-196will be 83 and the mass number will decrease by 4 so, the mass number of elements is 196 − 4 = 192. The element with atomic number 83 is Bismuth, Bi. Thus, the complete nuclear reaction is:
(b)
Interpretation: The given nuclear equation should be completed.
Concept Introduction: When an atom on undergoing radioactive decay emits an alpha particle (helium nucleus, 42He) from the nucleus of an atom, then such type of radioactive decays is said to be alpha decay.
(b)

Answer to Problem 22QAP
Explanation of Solution
Given:
When an atom on undergoing radioactive decay emits an alpha particle (helium nucleus, 42He) from the nucleus of an atom then such type of radioactive decays is said to be alpha decay.
The general reaction for alpha decay is:
Where A is mass number, Z is atomic number (number of protons), and X is the symbol of element.
The given atom is Po-208.
The atomic number of Po is 84. The alpha emission will result in decrease in number of protons by 2 so, the number of protons of the element formed from beta emission of Po-208 will be 82 and the mass number will decrease by 4 so, the mass number of elements is 208 − 4 = 204. The element with atomic number 82 is Lead, Pb. Thus, the complete nuclear reaction is:
(c)
Interpretation: The given nuclear equation should be completed.
Concept Introduction: When an atom on undergoing radioactive decay emits an alpha particle (helium nucleus, 42He) from the nucleus of an atom then such type of radioactive decays is said to be alpha decay.
(c)

Answer to Problem 22QAP
Explanation of Solution
Given:
When an atom on undergoing radioactive decay emits an alpha particle (helium nucleus, 42He) from the nucleus of an atom, then such type of radioactive decays is said to be alpha decay.
The general reaction for alpha decay is:
Where A is mass number, Z is atomic number (number of protons), and X is the symbol of element.
The given atom is Rn-210.
The atomic number of Rn is 86. The alpha emission will result in decrease in number of protons by 2 so, the number of protons of the element formed from beta emission of Rn-210 will be 84 and the mass number will decrease by 4 so, the mass number of elements is 210 − 4 = 206. The element with atomic number 84 is Polonium, Po. Thus, the complete nuclear reaction is:
Want to see more full solutions like this?
Chapter 19 Solutions
EBK INTRODUCTORY CHEMISTRY
- N Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. NH O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic Garrow_forwardThe conjugate base of alkanes is called alkides. Correct?.arrow_forwardName these organic compounds: structure Br name CH3 CH3 ☐ ☐arrow_forward
- HH H-C H -C-H HH Draw the Skeletal Structures & H Name the molecules HH H H H H-C-C-C-C-C-C-H HHH HHH H H HHHHHHH H-C-C-C-C-C-C-C-C-C-H HHHHH H H H Harrow_forwarddont provide AI solution .... otherwise i will give you dislikearrow_forwardName these organic compounds: structure name CH3 CH3 ☐ F F CH3 ☐ O Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms ofarrow_forward
- Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. ZI NH Explanation Check O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic H O nonaromatic O aromatic O antiaromatic O nonaromatic ×arrow_forwardPart I. Draw the stepwise reaction mechanism of each product (a, b, c, d, e, f) HO HO OH НОН,С HO OH Sucrose HO CH₂OH H N N HO -H H -OH KMnO4, Heat H OH CH₂OH (d) Phenyl Osatriazole OH НОН,С HO HO + Glacial HOAC HO- HO CH₂OH OH HO Fructose (a) Glucose OH (b) H₂N HN (c) CuSO4-5H2O, ethanol H N N N HO ·H H OH H OH N CH₂OH OH (f) Phenyl Osazone H (e) Carboxy phenyl osatriazole Figure 2.1. Reaction Scheme for the Total Synthesis of Fine Chemicalsarrow_forwardWhich molecule is the most stable? Please explain.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




