Concept explainers
The structural components of a flexible pavement.
Explanation of Solution
The structural components of a flexible pavement are as follows:
- The subgrade or prepared roadbed,
- The subbase,
- The base and
- The surface course.
It is necessary to check for the evaluation of every component of the flexible pavement and
Subgrade (Prepared Roadbed)
It is first in the line of materials that are to be laid and serves as the foundation of the flexible pavement structure. It is being spread along the horizontal alignment of the pavement. The materials used in this layer are very well compacted to meet the prescribed specifications of strength. In this layer, borrow materials may also be used according to the pavement being constructed.
Subbase Course
This layer is kept above the subgrade and the materials used in this layer are of better quality as compared to that of the materials used in subgrade. The materials used in this flexible pavement structure must meet the specifications in terms of gradation, strength and plastic characteristics.
And in case, if the materials for the subbase course aren't readily available then the subgrade materials are treated to meet the specifications that of the subbase course material properties.
Base Course
This course comes at the third place in the line of pavement structures. It isplaced just above the subbase course and if subbase is not used then it lies immediately above the subgrade of the pavement structure. The materials that are used in this pavement section are of much better quality then those used in the previous layers in terms of gradation, strength and plastic requirements. Granular materials likestone,slag, gravel, and sand are used in this course of flexible pavement structure.Wherein, slag and gravel can be used in both forms i.e., (crushed or uncrushed) stones should be crushed. In case if some of the materials are not meeting the specifications for this line of course then they are used in the base if appropriately stabilized with Portland cement, lime or asphalt.For high quality pavements the material is treated with Portland cement or asphalt to improve the stiffness characteristics of such pavements.
Surface Course
This is the topmost layer of the flexible pavement and is placed above the base course of the road pavement. The materials in this pavement include a mixture of aggregates and asphalt. The properties of this material must be able to hold out against the high tire pressure, withstand abrasive forces due to the traffic flow, prevention against the infiltration of surface water to avoid rupturing of surface course and weakening of the underlying structural bed of the pavement. Considering the expected traffic flow the thickness of this layer varies from 3 inches to 6 inches.
Want to see more full solutions like this?
- ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardA square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.5B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ Variation of Influence Value I m n 0.5 0.6 0.8 1.0 0.2 0.4 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = Activity Frame (b) Determine the vertical stress increase at a depth of 0.5B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L+ z) (Enter your answer to three significant figures.) Δσ/90 = (c) Determine the vertical stress increase at a depth of 0.5B below the center using stress isobars in…arrow_forward
- Need help!!!arrow_forward2 A flexible circular area is subjected to a uniformly distributed load of 450 kN/m² (the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. H₂ 1.0 H₂ B 0.8 CHI HD DV 0.6 C 1.0 1.5 0.4 0.2 6.0 8.0. 10.0 2.0 2.5 3.0 4.0 5.0 H₁ (Enter your answer to two significant figures.) Δσαν τ kN/m² 6arrow_forwardRefer to the figure below. Using the procedure outlined in your textbook, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 45 tons. Use the equations: Aσ = and qo x B x L (B+ z)(L+ z) Aσ av (H2/H₁) Δσι +44 + Δσο net load 6 4:5 ft 10 ft 5ft x 5ft Sand Sand y=100 lb/ft³ Ysat 122 lb/ft³:" Ysat 120 lb/ft³: 0.7 C=0.25 Groundwater table C=0.06 Preconsolidation pressure = 2000 lb/ft² (Enter your answer to three significant figures.) Ασαν = lb/ft²arrow_forward
- Refer to the figure below, which shows a flexible rectangular area. Given: B₁ = 4 ft, B₂ = 6 ft, L₁ = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 4100 lb/ft², determine the stress increase at a depth of 10 ft located immediately below point O. Use the table below. T B(1) 3 B(2) 2 L(1) * 4 L2) Table 1 Variation of Influence Value I n m 0.8 0.9 1.0 1.2 1.4 0.1 0.02576 0.02698 0.02794 0.02926 0.03007 0.2 0.05042 0.05283 0.05471 0.05733 0.05894 0.3 0.07308 0.07661 0.07938 0.08323 0.08561 0.4 0.09314 0.09770 0.10129 0.10631 0.10941 0.5 0.11035 0.11584 0.12018 0.12626 0.13003 0.6 0.12474 0.13105 0.13605 0.14309 0.14749 0.7 0.13653 0.14356 0.14914 0.15703 0.16199 0.8 0.14607 0.15371 0.15978 0.16843 0.17389 0.9 0.15371 0.16185 0.16835 0.1766 0.18357 1.0 0.15978 0.16835 0.17522 0.18508 0.19139 1.1 0.16843 0.17766 0.18508 0.19584 0.20278 (Enter your answer to three significant figures.) Aσ = lb/ft²arrow_forwardPoint loads of magnitude 100, 200, and 380 kN act at B, C, and D, respectively (in the figure below). Determine the increase in vertical stress at a depth of 6 m below point A. Use Boussinesq's equation. B 6 m A 6 m с 3 m D (Enter your answer to three significant figures.) Δαχτ kN/m²arrow_forwardTwo line loads q₁ = 30 kN/m and 92 = 44 kN/m of infinite lengths are acting on top of an elastic medium, as shown in the figure below. Find the vertical stress increase at A. 92 91 6 m 3 m 3 m Δσ A (Enter your answer to three significant figures.) Vertical stress increase at A = kN/m²arrow_forward
- A flexible circular area is subjected to a uniformly distributed load of 144 kN/m² (see the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. Use the equations: 1 Ασ = go 1 [1 + (2) ² ³/2 and Aσ av (H2/H1) Δσι + 41ση + Ασο 6 9 B/2 krark do Δε Aσ (Enter your answer to three significant figures.) Ασαν = kN/m²arrow_forwardIn construction what is the difference in general requirements specific project requirements?arrow_forwardRefer to the figure below. Determine the vertical stress increase Aσ at point A with the values q₁ = 90 kN/m, q2 = 410 kN/m, x₁ = 4m, x2 = 2.5 m, and z = 3 m. Line load = 91 Line load=92 Δε (Enter your answer to three significant figures.) Δατ kN/m²arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning