Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134197319
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 19E
The human body can be 25% efficient at converting chemical energy of fuel to mechanical work. Can the body be considered a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pronghorn antelope can run at a remarkable 18 m/sm/s for up to 10 minutes, almost triple the speed that an elite human runner can maintain. For a 32 kgkg pronghorn, this requires an astonishing 3.4 kWkW of metabolic power, which leads to a significant increase in body temperature.
If the pronghorn had no way to exhaust heat to the environment, by how much would its body temperature increase during this run? (In fact, it will lose some heat, so the rise won't be this dramatic, but it will be quite noticeable, requiring adaptations that keep the pronghorn's brain cooler than its body in such circumstances.) Assume the efficiency of the pronghorn to be equal to that of human.
I need help with thermo question. Screenshot below
Solar energy is used for air conditioning a house. To maintain a pressurized water tank at 443 K solar radiation is allowed. At a particular time interval, 301kJ of heat is extracted from the house to maintain its temperature at 301K when the surroundings temperature is 310K. Consider the tank of water, the house and the surroundings as heat reservoirs, what is the minimum heat (in kJ ,2 decimal places) that must be extracted from the tank of water by any device built to accomplish the required cooling of the house. No other sources of energy are available.
Chapter 19 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Ch. 19.1 - Which of these processes is irreversible? (a)...Ch. 19.2 - The low temperature for a practical heat engine is...Ch. 19.3 - A clever engineer decides to increase the...Ch. 19.4 - In each of the following processes, does the...Ch. 19 - Could you cool the kitchen by leaving the...Ch. 19 - Prob. 2FTDCh. 19 - Should a car get better mileage in the summer or...Ch. 19 - Prob. 4FTDCh. 19 - Name some irreversible processes that occur in a...Ch. 19 - Your power company claims that electric heat is...
Ch. 19 - A hydroelectric power plant, using the energy of...Ch. 19 - A heat-pump manufacturer claims the device will...Ch. 19 - Prob. 9FTDCh. 19 - The heat Q added during adiabatic free expansion...Ch. 19 - Energy is conserved, so why cant we recycle it as...Ch. 19 - Why doesnt the evolution of human civilization...Ch. 19 - What are the efficiencies of reversible heat...Ch. 19 - A cosmic heat engine might operate between the...Ch. 19 - A reversible Carnot engine operating between...Ch. 19 - A Carnot engine absorbs 900 J of heat each cycle...Ch. 19 - Find the COP of a reversible refrigerator...Ch. 19 - Prob. 18ECh. 19 - The human body can be 25% efficient at converting...Ch. 19 - Calculate the entropy change associated with...Ch. 19 - You metabolize a 650-kcal burger at your 37C body...Ch. 19 - You heat 250 g of water from 10C to 95C. By how...Ch. 19 - Melting a block of lead already at its melting...Ch. 19 - How much energy becomes unavailable for work in an...Ch. 19 - Prob. 25ECh. 19 - A Carnot engine extracts 745 J from a 592-K...Ch. 19 - The maximum steam temperature in a nuclear power...Ch. 19 - Youre engineering an energy-efficient house that...Ch. 19 - A power plants electrical output is 750 MW....Ch. 19 - A power plant extracts energy from steam at 280C...Ch. 19 - The electric power output of all the thermal...Ch. 19 - Consider a Carnot engine operating between...Ch. 19 - An industrial freezer operates between 0C and 32C,...Ch. 19 - Use appropriate energy-flow diagrams to analyze...Ch. 19 - Prob. 35PCh. 19 - A refrigerator maintains an interior temperature...Ch. 19 - You operate a store thats heated by an oil furnace...Ch. 19 - Use energy-flow diagrams to show that the...Ch. 19 - A heat pump extracts energy from groundwater at...Ch. 19 - A reversible engine contains 0.350 mol of ideal...Ch. 19 - (a) Determine the efficiency for the cycle shown...Ch. 19 - A 0.20-mol sample of an ideal gas goes through the...Ch. 19 - A shallow pond contains 94 Mg of water. In winter,...Ch. 19 - Estimate the rate of entropy increase associated...Ch. 19 - The temperature of n moles of ideal gas is changed...Ch. 19 - The temperature of n moles of ideal gas is changed...Ch. 19 - A 6.36-mol sample of ideal diatomic gas is at 1.00...Ch. 19 - A 250-g sample of water at 80C is mixed with 250 g...Ch. 19 - An ideal gas undergoes a process that takes it...Ch. 19 - In an adiabatic free expansion, 6.36 mol of ideal...Ch. 19 - Find the entropy change when a 2.4-kg aluminum pan...Ch. 19 - An engine with mechanical power output 8.5 kW...Ch. 19 - Find the change in entropy as 2.00 kg of H2O at...Ch. 19 - Gasoline engines operate approximately on the Otto...Ch. 19 - The compression ratio r of an engine is the ratio...Ch. 19 - In a diesel cycle, gas at volume V1 and pressure...Ch. 19 - (a) Show that the heal flowing into the diesel...Ch. 19 - Youre considering buying a car that comes in...Ch. 19 - The 54-M W wood-fired McNeil Generating Station in...Ch. 19 - A 500-g copper block at 80C is dropped into 1.0 kg...Ch. 19 - An objects heat capacity is inversely proportional...Ch. 19 - A Carnot engine extracts heat from a block of mass...Ch. 19 - In an alternative universe, youve got the...Ch. 19 - Youre the environmental protection officer for a...Ch. 19 - Find an expression for the entropy gain when hot...Ch. 19 - Problem 74 of Chapter 16 provided an approximate...Ch. 19 - The molar specific heat at constant pressure for a...Ch. 19 - Prob. 68PCh. 19 - Energy-efficiency specialists measure the heat Qh...Ch. 19 - Refrigerators remain among the greatest consumers...Ch. 19 - The refrigerators COP is a. 13. b. 2. c. 3. d. 4.Ch. 19 - The fuel energy consumed at the power plant to run...Ch. 19 - Prob. 73PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
A wild-type fruit fly (heterozygous for gray body color and normal wings) is mated with a black fly with vestig...
Campbell Biology (11th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases. (d) The internal energy of the gas remains constant. (e) None of those statements is true.arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forward
- A heat pump has a coefficient of performance of 3.80 and operates with a power consumption of 7.03 103 W. (a) How much energy does it deliver into a home during 8.00 h of continuous operation? (b) How much energy does it extract from the outside air?arrow_forward(a) What is the rate of heat conduction through the 3.00-cm-thick fur of a large animal having a I .40-m surface area? Assume that the animal's skin temperature is 32.0 , that the air temperature is 5.00 , and that has the same thermal conductivity as air. (b) What food intake will the animal need in one day to replace this heat transfer?arrow_forwardThe insulated cylinder shown below is closed at both ends and contains an insulating piston that is flee to move on frictionless bearings. The piston divides the chamber into two compartments containing gases A and B. Originally, each compartment has a volume of 5.0102 m3 and contains a monatomic ideal gas at a temperature of and a pressure of 1.0 atm. (a) How many moles of gas are in each compartment? (b) Heat Q is slowly added to A so that it expands and B is compressed until the pressure of both gases is 3.0 atm. Use the fact that the compression of B is adiabatic to determine the final volume of both gases. (c) What are their final temperatures? (d) What is the value of Q?arrow_forward
- (a) How much heat must be added to raise the temperature of 1.5 mol of air 25.0 to 33.0 at constant volume? Assume air is completely diatomic. (b) Repeat the problem for the same number of moles of xenon, Xe.arrow_forwardFor a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardUnreasonable Results A meteorite 1.20 cm in diameter is so hot immediately after penetrating the atmosphere that it radiates 20.0 kW of power. (a) What is its temperature, if the surroundings are at 20.0C and it has an emissivity of 0.800? (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forward
- A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L. (a) What is the final pressure of the gas? (b) What are the initial and final temperatures? Find (c) Q, (d) Eint, and (e) W for the gas during this process.arrow_forwardA weightlifter drinks a protein shake that contains 2.00 × 10² Calories. She then performs multiple repetitions on the bench press and does 2.75 x 105 J of work. After her workout, her net change in internal energy is +1.50 × 105 J. During her workout, she loses heat to the environment, which results in the vaporization of perspiration from the surface of her skin. What mass of water did she lose due to perspiration? Assume the latent heat of vaporization of the perspiration is 2.42 x 106 J/kg. Number Unitsarrow_forwardIn a solar water heater, energy from the Sun is gathered by water that circulates through tubes in a rooftop collector.The solar radiation enters the collector through a transparent cover and warms the water in the tubes; this water is pumped into a holding tank. Assume that the efficiency of the overall system is 20% (that is, 80% of the incident solar energy is lost from the system). What collector area is necessary to raise the temperature of 200 L of water in the tank from 20C to 40°C in 1.0 h when the intensity of incident sunlight is 700 W/m2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY