Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134197319
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 35P
To determine
The monthly heating bill after converting to electrically powered heat pump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Many decisions are made on the basis of the payback period: the time it will take through savings to equal the capital cost of an investment. Acceptable payback times depend upon the business or philosophy one has. (For some industries, a payback period is as small as two years.) Suppose you wish to install the extra insulation. If energy cost $1.00 per million joules and the insulation was $4.00 per square meter, then calculate the simple payback time. Take the average for the 120 day heating season to be 15.0C.
A heat engine takes in 2500J and does 1500J of work.
a) How much energy is expelled as waste?
b) What is the efficiency of the engine?
A heat engine extracts 59 kJkJ from the hot reservoir and exhausts 32 kJkJ into the cold reservoir.
What is the work done?
What is the efficiency?
Chapter 19 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Ch. 19.1 - Which of these processes is irreversible? (a)...Ch. 19.2 - The low temperature for a practical heat engine is...Ch. 19.3 - A clever engineer decides to increase the...Ch. 19.4 - In each of the following processes, does the...Ch. 19 - Could you cool the kitchen by leaving the...Ch. 19 - Prob. 2FTDCh. 19 - Should a car get better mileage in the summer or...Ch. 19 - Prob. 4FTDCh. 19 - Name some irreversible processes that occur in a...Ch. 19 - Your power company claims that electric heat is...
Ch. 19 - A hydroelectric power plant, using the energy of...Ch. 19 - A heat-pump manufacturer claims the device will...Ch. 19 - Prob. 9FTDCh. 19 - The heat Q added during adiabatic free expansion...Ch. 19 - Energy is conserved, so why cant we recycle it as...Ch. 19 - Why doesnt the evolution of human civilization...Ch. 19 - What are the efficiencies of reversible heat...Ch. 19 - A cosmic heat engine might operate between the...Ch. 19 - A reversible Carnot engine operating between...Ch. 19 - A Carnot engine absorbs 900 J of heat each cycle...Ch. 19 - Find the COP of a reversible refrigerator...Ch. 19 - Prob. 18ECh. 19 - The human body can be 25% efficient at converting...Ch. 19 - Calculate the entropy change associated with...Ch. 19 - You metabolize a 650-kcal burger at your 37C body...Ch. 19 - You heat 250 g of water from 10C to 95C. By how...Ch. 19 - Melting a block of lead already at its melting...Ch. 19 - How much energy becomes unavailable for work in an...Ch. 19 - Prob. 25ECh. 19 - A Carnot engine extracts 745 J from a 592-K...Ch. 19 - The maximum steam temperature in a nuclear power...Ch. 19 - Youre engineering an energy-efficient house that...Ch. 19 - A power plants electrical output is 750 MW....Ch. 19 - A power plant extracts energy from steam at 280C...Ch. 19 - The electric power output of all the thermal...Ch. 19 - Consider a Carnot engine operating between...Ch. 19 - An industrial freezer operates between 0C and 32C,...Ch. 19 - Use appropriate energy-flow diagrams to analyze...Ch. 19 - Prob. 35PCh. 19 - A refrigerator maintains an interior temperature...Ch. 19 - You operate a store thats heated by an oil furnace...Ch. 19 - Use energy-flow diagrams to show that the...Ch. 19 - A heat pump extracts energy from groundwater at...Ch. 19 - A reversible engine contains 0.350 mol of ideal...Ch. 19 - (a) Determine the efficiency for the cycle shown...Ch. 19 - A 0.20-mol sample of an ideal gas goes through the...Ch. 19 - A shallow pond contains 94 Mg of water. In winter,...Ch. 19 - Estimate the rate of entropy increase associated...Ch. 19 - The temperature of n moles of ideal gas is changed...Ch. 19 - The temperature of n moles of ideal gas is changed...Ch. 19 - A 6.36-mol sample of ideal diatomic gas is at 1.00...Ch. 19 - A 250-g sample of water at 80C is mixed with 250 g...Ch. 19 - An ideal gas undergoes a process that takes it...Ch. 19 - In an adiabatic free expansion, 6.36 mol of ideal...Ch. 19 - Find the entropy change when a 2.4-kg aluminum pan...Ch. 19 - An engine with mechanical power output 8.5 kW...Ch. 19 - Find the change in entropy as 2.00 kg of H2O at...Ch. 19 - Gasoline engines operate approximately on the Otto...Ch. 19 - The compression ratio r of an engine is the ratio...Ch. 19 - In a diesel cycle, gas at volume V1 and pressure...Ch. 19 - (a) Show that the heal flowing into the diesel...Ch. 19 - Youre considering buying a car that comes in...Ch. 19 - The 54-M W wood-fired McNeil Generating Station in...Ch. 19 - A 500-g copper block at 80C is dropped into 1.0 kg...Ch. 19 - An objects heat capacity is inversely proportional...Ch. 19 - A Carnot engine extracts heat from a block of mass...Ch. 19 - In an alternative universe, youve got the...Ch. 19 - Youre the environmental protection officer for a...Ch. 19 - Find an expression for the entropy gain when hot...Ch. 19 - Problem 74 of Chapter 16 provided an approximate...Ch. 19 - The molar specific heat at constant pressure for a...Ch. 19 - Prob. 68PCh. 19 - Energy-efficiency specialists measure the heat Qh...Ch. 19 - Refrigerators remain among the greatest consumers...Ch. 19 - The refrigerators COP is a. 13. b. 2. c. 3. d. 4.Ch. 19 - The fuel energy consumed at the power plant to run...Ch. 19 - Prob. 73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A heat pump has a coefficient of performance of 3.80 and operates with a power consumption of 7.03 103 W. (a) How much energy does it deliver into a home during 8.00 h of continuous operation? (b) How much energy does it extract from the outside air?arrow_forwardShow that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardAn electrical power station uses 1.68 x 1014 J of heat input with an efficiency of 29.7%. (a) How much work is done? (b) How much waste heat is produced by the station? (c) What is the ratio of waste heat to work output? waste heat work outputarrow_forward
- A heat engine does 9,200 J of work per cycle while absorbing 22.0 kcal of heat from a high-temperature reservoir. What is the efficiency of this engine? (1 kcal = 4186 J)arrow_forwardAn engineer designs a heat engine using flat-plate solar collectors. The collectors deliver heat at 74°C and the engine releases heat to the surroundings at 32°C. What is the maximum possible efficiency of this engine? (Round the final answer to four decimal places.) The maximum efficiency of the engine is __%arrow_forwardplease answer the following As a gasoline engine is running, an amount of gasoline containing 12,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work. What is the engine's efficiency (in percent)? The burning gasoline has a temperature of about 4,300°F (2,600 K). The waste heat from the engine flows into air at about 88°F (304 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?arrow_forward
- The Mach 5 racer driven by Speed Racer has an engine that pulls 14250J of heat energy from a high temperature reservoir held at 1069°C to do 2985J of usable work. a) What is the efficiency of the Mach 5’s engine? b) If the ideal efficiency of the heat engine is 0.675, what is the temperature of the low temperature reservoir in degrees Kelvin?arrow_forwardA heat engine takes 1800 kcal of heat from a hot reservoir at 270oC and vents 1200 kcal to a cold reservoir at 40oC. What is the efficiency of this heat engine and what is the maximum efficiency that any heat engine between these two reservoirs could have?arrow_forwardAs a gasoline engine is running, the amount of gasoline containing 15,000J of chemical potential energy is burned in 1 s. During that second, the engine does 3,000J of work. The burning gasoline has a temperature of about 2500 K. The waste heat from the engine flows into the air at about 300 K. What is the Carnot efficiency of a heat engine operating between these two temperatures?arrow_forward
- A homeowner is trying to decide between a highefficiency natural gas furnace with an efficiency of 97 percent and a ground-source heat pump with a COP of 3.5. The unit costs of electricity and natural gas are $0.115/kWh and $1.42/therm (1 therm = 105,500 kJ). Determine which system will have a lower energy cost.arrow_forwardA heat pump removes 2060 J of heat from the outdoors and delivers 3060 J of heat to the inside of a house. (a) How much work does the heat pump need?(b) What is the coefficient of performance of the heat pump?arrow_forwardA heat engine has a solar collector receiving 600 Btu/h per square foot, inside which a transfer medium is heated to 800 R. The collected energy powers a heat engine that rejects heat at 100 F. If the heat engine should deliver 8500 Btu/h, what is the minimum size (area) of the solar collector?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning