Concept explainers
Review. A steel guitar string with a diameter of 1.00 mm is stretched between supports 80.0 cm apart. The temperature is 0.0°C. (a) Find the mass per unit length of this siring. (Use the value 7.86 × 103 kg/m4 for the density.) (b) The fundamental frequency of transverse oscillations of the string is 200 Hz. What is the tension in the string? Next, the temperature is raised to 30.0°C. Find the resulting values of (c) the tension and (d) the fundamental frequency. Assume both the Young’s modulus of 20.0 × 1010 N/m2 and the average coefficient of expansion α = 11.0 × 10-6 (°C)-1 have constant values between 0.0°C and 30.0°C.
(a)
The mass per unit length of the string.
Answer to Problem 19.73CP
The mass per unit length of the string is
Explanation of Solution
Given Info: The diameter of the string of the steel guitar is
Formula to calculate the radius of the wire is,
Here,
Substitute
Thus, the value of the radius is
The area of cross section of the steel string is,
Substitute
Thus, the area of cross section of the steel string is
Formula to calculate the mass per unit length of the steel string is,
Here,
Substitute
Conclusion:
Therefore, the mass per unit length of the string is
(b)
The Tension in the string.
Answer to Problem 19.73CP
The Tension in the string is
Explanation of Solution
Given Info: The diameter of the string of the steel guitar is
Formula to calculate the fundamental frequency is,
Here,
Rearrange the above expression for
Substitute
Conclusion:
Therefore, the Tension in the string is
(c)
The Tension in the string when the temperature is raised to
Answer to Problem 19.73CP
The Tension in the string when the temperature is raised to
is
Explanation of Solution
Given Info: The diameter of the string of the steel guitar is
Formula for the change in the length, when temperature varies is,
Here,
Substitute
Thus, the final length of the brass pendulum is
Formula to calculate the tension in the wire is,
Substitute
Conclusion:
Therefore, the Tension in the string when the temperature is raised to
is
(d)
The fundamental frequency of the string.
Answer to Problem 19.73CP
The fundamental frequency of the string is
Explanation of Solution
Given Info: The diameter of the string of the steel guitar is
Write the expression for the fundamental frequency.
Substitute
Conclusion:
Therefore, the fundamental frequency of the string is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Volume 1
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning