
Concept explainers
(a)
Interpretation:
Need to calculate the Faraday of electricity needed for the production of 0.84L of O2 with 1 atm pressure upon
Concept introduction:
Electrolysis of aqueous sulfuric acid i.e. acidified water resulted in the production of oxygen and hydrogen gas, which will be liberated at the anode and cathode respectively. The presence of H+ and SO-4 made the solution to be more conductivity. SO-4 is more stable to be inert at the anode.
Further the cell reaction can be written as shown below
Since volume and pressure of oxygen produced was given, by applying it into ideal gas equation we can calculate the number of mole of oxygen produced
The ideal gas equation can be given as follows.
On applying the number of moles of oxygen produced into stoichiometry of the reaction, the number of moles electron involved in the reaction can be calculated. In case of the given reaction 4 mole of electron was liberated during the production of one mole of oxygen. Since one Faraday is equal to one mole of electron, so 4 Faraday of electricity will be needed to produce one mole of oxygen.
Finally the Faraday of electricity utilized to produce the required amount of oxygen can be calculated according the formula
To find: Amount of Faraday of electricity need to produce 0.076L of O2 with pressure 755mmHg, at 298K, through electrolysis of water.
(a)

Answer to Problem 19.50QP
Ideal gas equation can be used to calculate the number of moles of oxygen produced, from that faraday of electricity needed will be calculated in successive steps (a)
Since one mole of oxygen need 4 Faraday of electricity, so the Faraday of electricity needed to produce
Faraday of electricity need to produce 0.84L of oxygen with pressure 1 atm was calculated as
Explanation of Solution
Ideal gas equation can be used to calculate the number of moles of oxygen produced
Since one mole of oxygen need 4 Faraday of electricity, so the Faraday of electricity needed to produce
Faraday of electricity need to produce 0.84L of oxygen with pressure 1 atm was calculated as
At first the number of moles of oxygen produced through electrolysis was calculated using ideal gas equation, from the given volume and pressure. Thus it was calculated as
The amount of electricity needed to produce 0.84L of oxygen with pressure of 1atm was determined to be
(b)
Interpretation:
Need to calculate the Faraday of electricity needed for the production of 1.50L of Cl2 with pressure 750 mmHg at 20oC by electrolysis of molten NaCl.
Concept introduction:
Electrolysis of molten sodium chloride was represented by the below equation. By using ideal gas equation, the number of moles of chlorine liberated at the anode can be calculated, provided the pressure and volume are known.
The ideal gas equation can be given as follows.
The equation we find that two mole of electron is needed to produce one mole of chlorine gas , Since one Faraday is equal to one mole of electron, The Faraday of electricity utilized to produce given amount of chlorine can be calculated according the formula
To find: Faraday of electricity need to produce 1.50 L of Cl2 with pressure 750mmHg, at 293K, through electrolysis of molten NaCl.
(b)

Answer to Problem 19.50QP
Ideal gas equation can be used to calculate the number of moles of chlorine gas produced, Further from the number of moles of chlorine; the faraday of electricity utilized will be calculated in successive steps (b)
Since one mole of chlorine need two Faraday of electricity, so the Faraday of electricity needed to produce
Faraday of electricity need to produce 1.50L of chlorine with pressure 750mm Hg was calculated as
Explanation of Solution
Ideal gas equation can be used to calculate the number of moles of oxygen produced
Since one mole of chlorine need two Faraday of electricity, so the Faraday of electricity needed to produce
The number of moles of chlorine produced through electrolysis was calculated using ideal gas equation, from the given volume and pressure it was calculated as
The amount of electricity needed to produce 1.5 L of chlorine with pressure of 750 mmHg was determined to be
(c)
Interpretation:
Need to calculate the Faraday of electricity needed for the production of 6g of Sn though electrolysis of molten SnCl2.
Concept introduction:
Electrolysis of molten stannous chloride will result in the formation of Tin (Sn) and chlorine gas and half-cell reaction at the anode and cathode was given below. In this two electrons were released by chloride ion at the anode and get liberated as chlorine gas, further stannous ion accept two electron and for tin metal
The ideal gas equation can be given as follows.
Since the mass of the metal produced was given, from that number of moles of Sn can be calculated. Further from the number of moles of Sn produced the Faraday of electricity can be calculated by the formula given below, since one Faraday is equal to one mole of electron. In the present case 2 moles of electrons are needed to reduce one mole of Sn2+
So
To find: Faraday of electricity need to produce 6 g of Tin, by electrolysis of molten SnCl2.
(c)

Answer to Problem 19.50QP
From the mass of tin produced during the electrolysis, the Faraday of electricity needed for reaction can be calculated in the following steps (c).
Since one mole of Sn2+ ion need two Faraday of electricity to, so the Faraday of electricity needed to produce
Explanation of Solution
From the molar mass calculation
Weight = 6g
Since one mole of Sn2+ ion need two Faraday of electricity, so the Faraday of electricity needed to produce
The number of moles of tin produced through electrolysis was calculated as
The Faraday of electricity need to produce 6g of Tin from by electrolysis of molten SnCl2 was identified as
Want to see more full solutions like this?
Chapter 19 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- lighting discharges in the atmosphere catalyze the conversion of nitrogen to nitric oxide. How many grams of nitrogen would be required to make 25.0 g of nitric oxide in this way ?arrow_forwardThe electron of a hydrogen atom is excited to the 4d orbital. Calculate the energy of the emitted photon if the electron were to move to each of the following orbitals: (a) 1s; (b) 2p; (c) 2s; (d) 4s. (e) Suppose the outermost electron of a potassium atom were excited to a 4d orbital and then moved to each of these same orbitals. Describe qualitatively the differences that would be found between the emission spectra of potassium and hydrogen (do not perform calculations). Explain your answer.arrow_forwardImagine a four-dimensional world. In it, atoms would have one s orbital and four p orbitals in a given shell. (a) Describe the shape of the Periodic Table of the first 24 elements. (b) What elements would be the first two noble gases (use the names from our world that correspond to the atomic numbers).arrow_forward
- The electron affinity of thulium was measured by a technique called laser photodetachment electron spectroscopy. In this technique, a gaseous beam of anions of an element is bombarded with photons from a laser. The photons knock electrons off some of the anions, and the energies of the emitted electrons are detected. The incident radiation had a wavelength of 1064 nm, and the emitted electrons had an energy of 0.137 eV. Although the analysis is more complicated, we can obtain an estimate of the electron affinity from the energy difference between the photons and the emitted electrons. What is the electron affinity of thulium in electron volts and in kilojoules per mole?arrow_forwardBe sure to answer all parts. The following alkyne is treated with 03 followed by H₂O. Part 1: How many different compounds are formed in this process? 1 Part 2 out of 2 Draw the product of the reaction. draw structure ...arrow_forwardMany fireworks use magnesium to burn, which releases a significant amount of energy. The heat released causes the oxide to glow, emitting white light. The color of this light can be changed by including nitrates and chlorides of elements that emit in the visible region of their spectra. One such compound is barium nitrate, which produces a yellow-green light. Excited barium ions generate light with wavelengths of 487 nm, 524 nm, 543 nm, and 578 nm. For each case, calculate: (a) the change in energy (in electron volts) of a barium atom and (b) the molar change in energy (in kilojoules per second).arrow_forward
- Clouds of hot, luminous interstellar hydrogen gas can be seen in some parts of the galaxy. In some hydrogen atoms, electrons are excited to quantum levels with n = 100 or higher. (a) Calculate the wavelength observed on Earth if the electrons fall from the level with n = 100 to one with n = 2. (b) In what series would this transition be found? (c) Some of these high-energy electrons fall into intermediate states, such as n = 90. Would the wavelengths of a transition from the state with n = 100 to one with n = 90 be longer or shorter than those in the Balmer series? Explain your answer.arrow_forwardIn the spectroscopic technique known as photoelectron spectroscopy (PES), ultraviolet radiation is directed at an atom or molecule. Electrons are ejected from the valence shell and their kinetic energies are measured. Since the energy of the incident ultraviolet photons is known and the kinetic energy of the ejected electron is measured, the ionization energy, I, can be deduced because total energy is conserved. (a) Show that the velocity, v, of the ejected electron and the frequency, n, of the incident radiation are related by hv = I + (1/2)mv^2? (b) Use this relation to calculate the ionization energy of a rubidium atom, knowing that light of wavelength 58.4 nm produces electrons with a velocity of 2,450 km/s Recall that 1 J = 1 kg.m^2/s^2arrow_forwardI) In Millikan's experiment, each droplet observed by the technicians contained an even number of electrons. If they had been unaware of this limitation, how would it have affected their report of an electron's charge?II) Millikan measured the charge of an electron in electrostatic units, esu. The data he collected included the following series of charges found on oil drops: 9.60 X 10^-10 esu, 1.92 X 10^-9 esu; 2.40 X 10^-9 esu; 2.88 X 10^-9 esu; and 4.80 X 10^-9 esu. (a) From this series, find the probable charge of the electron in electrostatic units. (b) Estimate the number of electrons in an oil drop with a charge of 6.72 X 10^-9 esu. The actual charge (in Coulombs) of an electron is 1.602 X 10^-19 C. What is the relationship between esu and Coulombs?arrow_forward
- my ccc edu - Search X Quick Access X D2L Homepage - Spring 2025 x N Netflix X Dimensional Analysis - A x+ pp.aktiv.com Q ☆ X Question 59 of 70 The volume of 1 unit of plasma is 200.0 mL If the recommended dosage for adult patients is 10.0 mL per kg of body mass, how many units are needed for a patient with a body mass of 80.0 kg ? 80.0 kg 10.0 DAL 1 units X X 4.00 units 1 1 Jeg 200.0 DAL L 1 units X 200.0 mL = 4.00 units ADD FACTOR *( ) DELETE ANSWER RESET D 200.0 2.00 1.60 × 10³ 80.0 4.00 0.0400 0.250 10.0 8.00 & mL mL/kg kg units/mL L unit Q Search delete prt sc 111 110 19arrow_forwardIdentify the starting material in the following reaction. Click the "draw structure" button to launch the drawing utility. draw structure ... [1] 0 3 C10H18 [2] CH3SCH3 Harrow_forwardIn an equilibrium mixture of the formation of ammonia from nitrogen and hydrogen, it is found that PNH3 = 0.147 atm, PN2 = 1.41 atm and Pн2 = 6.00 atm. Evaluate Kp and Kc at 500 °C. 2 NH3 (g) N2 (g) + 3 H₂ (g) K₂ = (PN2)(PH2)³ = (1.41) (6.00)³ = 1.41 x 104arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





