
Concept explainers
(a)
Interpretation:
Need to calculate the Faraday of electricity needed for the production of 0.84L of O2 with 1 atm pressure upon
Concept introduction:
Electrolysis of aqueous sulfuric acid i.e. acidified water resulted in the production of oxygen and hydrogen gas, which will be liberated at the anode and cathode respectively. The presence of H+ and SO-4 made the solution to be more conductivity. SO-4 is more stable to be inert at the anode.
Further the cell reaction can be written as shown below
Since volume and pressure of oxygen produced was given, by applying it into ideal gas equation we can calculate the number of mole of oxygen produced
The ideal gas equation can be given as follows.
On applying the number of moles of oxygen produced into stoichiometry of the reaction, the number of moles electron involved in the reaction can be calculated. In case of the given reaction 4 mole of electron was liberated during the production of one mole of oxygen. Since one Faraday is equal to one mole of electron, so 4 Faraday of electricity will be needed to produce one mole of oxygen.
Finally the Faraday of electricity utilized to produce the required amount of oxygen can be calculated according the formula
To find: Amount of Faraday of electricity need to produce 0.076L of O2 with pressure 755mmHg, at 298K, through electrolysis of water.
(a)

Answer to Problem 19.50QP
Ideal gas equation can be used to calculate the number of moles of oxygen produced, from that faraday of electricity needed will be calculated in successive steps (a)
Since one mole of oxygen need 4 Faraday of electricity, so the Faraday of electricity needed to produce
Faraday of electricity need to produce 0.84L of oxygen with pressure 1 atm was calculated as
Explanation of Solution
Ideal gas equation can be used to calculate the number of moles of oxygen produced
Since one mole of oxygen need 4 Faraday of electricity, so the Faraday of electricity needed to produce
Faraday of electricity need to produce 0.84L of oxygen with pressure 1 atm was calculated as
At first the number of moles of oxygen produced through electrolysis was calculated using ideal gas equation, from the given volume and pressure. Thus it was calculated as
The amount of electricity needed to produce 0.84L of oxygen with pressure of 1atm was determined to be
(b)
Interpretation:
Need to calculate the Faraday of electricity needed for the production of 1.50L of Cl2 with pressure 750 mmHg at 20oC by electrolysis of molten NaCl.
Concept introduction:
Electrolysis of molten sodium chloride was represented by the below equation. By using ideal gas equation, the number of moles of chlorine liberated at the anode can be calculated, provided the pressure and volume are known.
The ideal gas equation can be given as follows.
The equation we find that two mole of electron is needed to produce one mole of chlorine gas , Since one Faraday is equal to one mole of electron, The Faraday of electricity utilized to produce given amount of chlorine can be calculated according the formula
To find: Faraday of electricity need to produce 1.50 L of Cl2 with pressure 750mmHg, at 293K, through electrolysis of molten NaCl.
(b)

Answer to Problem 19.50QP
Ideal gas equation can be used to calculate the number of moles of chlorine gas produced, Further from the number of moles of chlorine; the faraday of electricity utilized will be calculated in successive steps (b)
Since one mole of chlorine need two Faraday of electricity, so the Faraday of electricity needed to produce
Faraday of electricity need to produce 1.50L of chlorine with pressure 750mm Hg was calculated as
Explanation of Solution
Ideal gas equation can be used to calculate the number of moles of oxygen produced
Since one mole of chlorine need two Faraday of electricity, so the Faraday of electricity needed to produce
The number of moles of chlorine produced through electrolysis was calculated using ideal gas equation, from the given volume and pressure it was calculated as
The amount of electricity needed to produce 1.5 L of chlorine with pressure of 750 mmHg was determined to be
(c)
Interpretation:
Need to calculate the Faraday of electricity needed for the production of 6g of Sn though electrolysis of molten SnCl2.
Concept introduction:
Electrolysis of molten stannous chloride will result in the formation of Tin (Sn) and chlorine gas and half-cell reaction at the anode and cathode was given below. In this two electrons were released by chloride ion at the anode and get liberated as chlorine gas, further stannous ion accept two electron and for tin metal
The ideal gas equation can be given as follows.
Since the mass of the metal produced was given, from that number of moles of Sn can be calculated. Further from the number of moles of Sn produced the Faraday of electricity can be calculated by the formula given below, since one Faraday is equal to one mole of electron. In the present case 2 moles of electrons are needed to reduce one mole of Sn2+
So
To find: Faraday of electricity need to produce 6 g of Tin, by electrolysis of molten SnCl2.
(c)

Answer to Problem 19.50QP
From the mass of tin produced during the electrolysis, the Faraday of electricity needed for reaction can be calculated in the following steps (c).
Since one mole of Sn2+ ion need two Faraday of electricity to, so the Faraday of electricity needed to produce
Explanation of Solution
From the molar mass calculation
Weight = 6g
Since one mole of Sn2+ ion need two Faraday of electricity, so the Faraday of electricity needed to produce
The number of moles of tin produced through electrolysis was calculated as
The Faraday of electricity need to produce 6g of Tin from by electrolysis of molten SnCl2 was identified as
Want to see more full solutions like this?
Chapter 19 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Draw the titration curve of (i) weak acid vs. strong base; (ii) weak acid vs. weakbase; (iii) diprotic acid with strong base (iii) triprotic acid with strong base.arrow_forwardComplete the reaction in the drawing area below by adding the major products to the right-hand side. If there won't be any products, because nothing will happen under these reaction conditions, check the box under the drawing area instead. Note: if the products contain one or more pairs of enantiomers, don't worry about drawing each enantiomer with dash and wedge bonds. Just draw one molecule to represent each pair of enantiomers, using line bonds at the chiral center. More... No reaction. my ㄖˋ + 1. Na O Me Click and drag to start drawing a structure. 2. H +arrow_forwardPredict the intermediate 1 and final product 2 of this organic reaction: NaOMe H+ + 1 2 H H work up You can draw 1 and 2 in any arrangement you like. Note: if either 1 or 2 consists of a pair of enantiomers, just draw one structure using line bonds instead of 3D (dash and wedge) bonds at the chiral center. Click and drag to start drawing a structure. X $ dmarrow_forward
- Predict the major products of this organic reaction: 1. NaH (20°C) 2. CH3Br ? Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. G Crarrow_forwardPredict the major products of this organic reaction: 1. LDA (-78°C) ? 2. Br Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. . • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. Xarrow_forwardPlease draw the structuresarrow_forward
- Draw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 0 1. Eto 1. Eto- 1 2 2. MeBr 2. EtBr H3O+ A 3 You can draw the three structures in any arrangement you like. Explanation Check Click and drag to start drawing a structure.arrow_forwardDraw the missing intermediate 1 and final product 2 of this synthesis: 1. MeO- H3O+ 1 2 2. PrBr Δ You can draw the two structures in any arrangement you like. Click and drag to start drawing a structure.arrow_forwardWhat is the differences between: Glyceride and phosphoglyceride Wax and Fat Soap and Fatty acid HDL and LDL cholesterol Phospho lipids and sphingosine What are the types of lipids? What are the main lipid components of membrane structures? How could lipids play important rules as signaling molecules and building units? The structure variety of lipids makes them to play significant rules in our body, conclude breifly on this statement.arrow_forward
- What is the differences between DNA and RNA for the following: - structure - function - type What is the meaning of: - replication - transcription - translation show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





