
Concept explainers
(a)
Interpretation:
The type of interaction present between the side chains of tyrosine and glutamine is to be stated.
Concept introduction:
The structure of proteins has four stages. These four stages are: primary, secondary, tertiary and quaternary structures. In primary structure, the amino acids are arranged to give the backbone of protein. In secondary structure, the pattern of the peptide chain is arranged in certain order. In tertiary structure, the interactions between the side chains of amino acids are considered. In quaternary structure, two or more peptide chains are linked.

Answer to Problem 19.42E
The type of interaction present between the side chains of tyrosine and glutamine is hydrogen bonding.
Explanation of Solution
The structures of tyrosine and glutamine are shown in Figure 1.
Figure 1
In tyrosine, the side chain has
Therefore, the type of interaction present between the side chains of tyrosine and glutamine is hydrogen bonding.
The type of interaction present between the side chains of tyrosine and glutamine is hydrogen bonding.
(b)
Interpretation:
The type of interaction present between the side chains of aspartate and lysine is to be stated.
Concept introduction:
The structure of proteins has four stages. These four stages are: primary, secondary, tertiary and quaternary structures. In primary structure, the amino acids are arranged to give the backbone of protein. In secondary structure, the pattern of the peptide chain is arranged in certain order. In tertiary structure, the interactions between the side chains of amino acids are considered. In quaternary structure, two or more peptide chains are linked.

Answer to Problem 19.42E
The type of interaction present between the side chains of aspartate and lysine is salt bridge.
Explanation of Solution
The structures of aspartate and lysine are shown in Figure 2.
Figure 2
In aspartate, the side chain has
The type of interaction present between the side chains of aspartate and lysine is salt bridge.
(c)
Interpretation:
The type of interaction present between the side chains of leucine and isoleucine is to be stated.
Concept introduction:
The structure of proteins has four stages. These four stages are: primary, secondary, tertiary and quaternary structures. In primary structure, the amino acids are arranged to give the backbone of protein. In secondary structure, the pattern of the peptide chain is arranged in certain order. In tertiary structure, the interactions between the side chains of amino acids are considered. In quaternary structure, two or more peptide chains are linked.

Answer to Problem 19.42E
The type of interaction present between the side chains of leucine and isoleucine is hydrophobic interaction.
Explanation of Solution
The structures of leucine and isoleucine are shown in Figure 3.
Figure 3
In leucine, the side chain has
The type of interaction present between the side chains of leucine and isoleucine is hydrophobic interaction.
(d)
Interpretation:
The type of interaction present between the side chains of phenylalanine and valine is to be stated.
Concept introduction:
The structure of proteins has four stages. These four stages are: primary, secondary, tertiary and quaternary structures. In primary structure, the amino acids are arranged to give the backbone of protein. In secondary structure, the pattern of the peptide chain is arranged in certain order. In tertiary structure, the interactions between the side chains of amino acids are considered. In quaternary structure, two or more peptide chains are linked.

Answer to Problem 19.42E
The type of interaction present between the side chains of phenylalanine and valine is hydrophobic interaction.
Explanation of Solution
The structures of phenylalanine and valine are shown in Figure 4.
Figure 4
In phenylalanine, the side chain has
The type of interaction present between the side chains of phenylalanine and valine is hydrophobic interaction.
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry for Today: General Organic and Biochemistry
- Using wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forward
- Given a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forwardTRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER





