
Concept explainers
(a)
Interpretation:
Calculate the volume of hydrogen with pressure 155 atm that run an electric motor for 3 h and volume of air with 20%oxygen needed to run the electric motor per minute.
Concept introduction:
Hydrogen-Oxygen fuel cell works on the principle of oxidation of hydrogen and reduction of oxygen, it was made up of potassium hydroxide as an electrolyte solution and two inert electrodes. Hydrogen and oxygen gases were bubbled through the anode and cathode compartments. The cell reaction of hydrogen-oxygen fuel cell was shown below.
Calculation of the volume of hydrogen gas used for generating of electricity involves multistep
1) Calculation of total number of charges that flow through the circuit, since coulomb is the amount of electric charge flowing in a circuit in 1s, when current is 1A. So the above statement can represented by the following equation.
On dividing the number of charges with Faraday constant we can attain the number of moles of electron
From knowing the number of mole of electrons and using the stoichiometry of the reaction, the number of moles of the substance reduced or oxidized can be determined. This can be explained by the representative reaction as shown below.
2 mole of hydrogen releases 4 mole of electron, so the number of moles of hydrogen oxidized can calculated by the following equation.
Finally on substituting the number of moles of the product into the ideal gas equation the volume of the gas needed for the cell reaction can be achieved.
P = Pressure of the gas
V = Volume of the gas
R = Universal gas constant
T = Temperature in kelvin
n = Number of moles of the gas
(a)

Answer to Problem 19.37QP
For the anode reaction
Number of charges passing through the circuit can be calculated using the formula
Current = 8.5A
Time = 3 h or 10800s
So
Volume of hydrogen can calculated from ideal gas equation
Explanation of Solution
For the anode reaction
Number of charges passing through the circuit can be calculated using the formula
Current = 8.5A
Time = 3 h or 10800s
So
On dividing the number of charges by faraday constant number of moles of electrons passing the circuit can be calculated as shown below
Volume of hydrogen can calculated from ideal gas equation
The volume of hydrogen with pressure 155atm, needed to run a motor of 8.5A for 3 hrs was calculated to be 0.075L.
(b)
Interpretation:
Calculate the volume of hydrogen with pressure 155 atm that run an electric motor for 3 h and volume of air with 20%oxygen needed to run the electric motor per minute.
Concept introduction:
Hydrogen-Oxygen fuel cell works on the principle of oxidation of hydrogen and reduction of oxygen, it was made up of potassium hydroxide as an electrolyte solution and two inert electrodes. Hydrogen and oxygen gases were bubbled through the anode and cathode compartments. The cell reaction of hydrogen-oxygen fuel cell was shown below.
Calculation of the volume of hydrogen gas used for generating of electricity involves multistep
1) Calculation of total number of charges that flow through the circuit, since coulomb is the amount of electric charge flowing in a circuit in 1s, when current is 1A. So the above statement can represented by the following equation.
On dividing the number of charges with Faraday constant we can attain the number of moles of electron
From knowing the number of mole of electrons and using the stoichiometry of the reaction, the number of moles of the substance reduced or oxidized can be determined. This can be explained by the representative reaction as shown below.
2 mole of hydrogen releases 4 mole of electron, so the number of moles of hydrogen oxidized can calculated by the following equation.
Finally on substituting the number of moles of the product into the ideal gas equation the volume of the gas needed for the cell reaction can be achieved.
P = Pressure of the gas
V = Volume of the gas
R = Universal gas constant
T = Temperature in kelvin
n = Number of moles of the gas
(b)

Answer to Problem 19.37QP
For the cathode half reaction
Charges flowing through the circuit for 1 minute
Thus obtained number of moles of electron can be used to determine the number of moles of hydrogen
Volume of oxygen can be calculated by using ideal gas equation
Then volume of air flown can be calculated as follows
Explanation of Solution
The volume of air flowing through the fuel cell can calculated in a step by step manner
For the cathode half reaction
charges flowing through the circuit for 1 minute
Thus obtained number of moles of electron can be used to determine the number of moles of hydrogen
Volume of oxygen can be calculated by using ideal gas equation
Then volume of air flown can be calculated as follows
The volume of air with 20% oxygen and pressure 1atm, needed to run a motor of 8.5A for 1 hr was determined as 0.16L.
Want to see more full solutions like this?
Chapter 19 Solutions
General Chemistry
- The radical below can be stabilized by resonance. 4th attempt Draw the resulting resonance structure. DOCEarrow_forwardUse curved arrows to generate a second resonance form for the allylic radical formed from 2-methyl-2-pentene. 1 Draw the curved arrows that would generate a second resonance form for this radical. D 2 H S F A Бг Iarrow_forwardDraw the resulting product(s) from the coupling of the given radicals. Inlcude all applicable electrons and non-zero formal charges. H.C öö- CH3 2nd attempt +1 : 招 H₂C CH CH₂ See Periodic Table See H H C S F P Br CH₂ Iarrow_forward
- Please, help me out with the calculation, step by step on how to find what's blank with the given information.arrow_forwardPredict the following products. Then show the mechanism. H₂N NH2arrow_forwardBF3, Boron Trifluoride, known to contain three covalent boron-fluorine bonds. suggest and illustrate all of the processes as well as their energetical consequences for the formation of BF3 from its elements.arrow_forward
- Draw the mechanism of the reaction.arrow_forward9. Draw all of the possible Monochlorination Products that would Result From the Free Radical Chlormation OF 23,4-TRIMethyl Pentane b. Calculate the To Yield For the major • Product given the Following Relative Restritus For 1° 2° and 30 Hydrogens toward Free Radical Chloration 5.0: 38 : 1 30 2° 1° C. what would be the major product in the Free Radical brominator Of the Same Molecule. Explain your Reasoning.arrow_forwardWhat is the complete reaction mechanism for the chlorination of Ethane, C2H6?arrow_forward
- A 13C NMR spectrum is shown for a molecule with the molecular formula of C6H100. Draw the structure that best fits this data. 220 200 180 160 140 120100 80 60 40 20 Drawingarrow_forwardPlease help me figure out the blan areas with step by step calculations.arrow_forwardneeding help draw all of the possible monochlorination products that would result from the free radical chlorination of 2,3,4-trimethylpentanearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





