EBK APPLIED FLUID MECHANICS
EBK APPLIED FLUID MECHANICS
7th Edition
ISBN: 8220100668340
Author: UNTENER
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19, Problem 19.1PP

Determine the velocity of flow and the friction loss as 1000 cfm of air flows through 75 ft of an 18 -in-diameter round duct.

Expert Solution & Answer
Check Mark
To determine

The velocity of flow

The value of friction loss

Answer to Problem 19.1PP

The velocity of flow, V=570ft/min

The value of friction loss, HL=0.021 in H2O

Explanation of Solution

Given information:

Diameter of the duct, D=18in

Rate of flow, Q=1000 cfm

Length of the duct, L=75 ft

To find out the friction loss, we use the formula

   HL=hL.(L100)............................................(1)

Where,

L= Length of the duct

HL=Friction loss

hL=friction loss of water per 100 ft

friction loss of water per 100 ft is calculated by the chart of friction loss in a duct and it is equal to hL=0.028 in H2O

We compare between any two given values and their intersecting point give the third required value

The velocity of flow is also calculated by the chart of friction loss in a duct and it is equal to

The V=570ft/min

Calculation:

Now we put the known values in equation

   HL=hL.(L100)HL=(0.028)X75100

HL= 0.021 in H2O

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. An operating parameter often used by power plant engineers is the heat rate. The heat rate is defined as, HR Qbioler Wnet where Qbioler is the heat transfer rate (Btu/h) to the water in the boiler due to the combustion of a fuel and Wnet is the net power (kW) delivered by the plant. In comparison, the thermal efficiency of the power plant is defined as, nth Wnet Qbioler where the numerator and denominator have the same units. Consider a power plant that is delivering 1000 MW of power while utilizing a heat transfer rate of 3570 MW at the boiler. Determine the heat rate and thermal efficiency of this power plant.
3. A steam power plant has an average monthly net power delivery of 740 MW over the course of a year. This power delivery is accomplished by burning coal in the boiler. The coal has a heating value of 9150 Btu/lbm. The cost of the coal is $14.20/ton. The overall thermal efficiency of the plant is, nth Wnet Qboiler 0.26 = 26% Determine the annual cost of the coal required to deliver the given average monthly power.
The shaft shown in the sketch is subjected to tensile torsional and bending loads Determine the principal stresses at the location of stress concentration ✓ D=45MR F=3MM 1000-M 1000N チ d=30mm 500N 150 мм MM- 120 MA-
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Materials Science Mechanical Engineering - Part 3 Corrosion Explained; Author: Mega Mechatronics;https://www.youtube.com/watch?v=Il-abRhrzFY;License: Standard Youtube License