CHEMISTRY: THE MOLECULAR NATURE OF MATTE
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
9th Edition
ISBN: 9781265974688
Author: SILBERBERG
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 19.145P

(a)

Interpretation Introduction

Interpretation:

The scene which shows buffer has to be shown.

Concept introduction:

Buffer solution:

The solution which is capable of maintaining it’s pH almost constant when a little amount of acid or base is added to it, is known as buffer solution. They are mainly mixture of weak acid and its conjugate base or vice versa.

Henderson-Hasselbalch Equation:

This equation is used to determine the pH of a buffer solution. Ka is the given quantity I.e. acid dissociation constant. It is done for a given concentration of acid and its conjugate base.

  pH=pKa+log[salt][acid]

pKa:

pKa is the negative log of acid dissociation constant that determines the strength of acid. Lower the pKa value stronger is the acid.

pKa1 is the 1st dissociation constant for the acid and pKa2 is the 2nd dissociation constant of the acid.

(b)

Interpretation Introduction

Interpretation:

pH of each solution has to be calculated.

Concept introduction:

pH:

pH is a scale used to specify how acidic or basic a solution is. It ranges from 014. pH 7.0 is considered as neutral solution, pH more than 7.0 is taken as basic solution whereas pH less than 7.0 is considered as acidic solution (at 25οC). It is the measurement of activity of free H+ and OH- in solution.

Buffer solution:

The solution which is capable of maintaining it’s pH almost constant when a little amount of acid or base is added to it is known as buffer solution. They are mainly mixture of weak acid and its conjugate base or vice versa.

Henderson-Hasselbalch Equation:

This equation is used to determine the pH of a buffer solution. Ka is the given quantity i.e. acid dissociation constant. It is done for a given concentration of acid and its conjugate base.

  pH=pKa+log[salt][acid]

pKa:

pKa is the negative log of acid dissociation constant that determines the strength of acid. Lower the pKa value stronger is the acid.

pKa1 is the 1st dissociation constant for the acid and pKa2 is the 2nd dissociation constant of the acid.

(c)

Interpretation Introduction

Interpretation:

The scenes have to be arranged considering them in weak acid strong base titration situation.

Concept introduction:

Titration:

Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.

Equivalence point:

Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.

pH:

pH is a scale used to specify how acidic or basic a solution is. It ranges from 014. pH 7.0 is considered as neutral solution, pH more than 7.0 is taken as basic solution whereas pH less than 7.0 is considered as acidic solution (at 25οC). It is the measurement of activity of free H+ and OH- in solution.

Weak acid- strong base titration:

Weak acids dissociates very slowly in solution producing less number of H+ and so at first in solution there will be more undissociated acid.

But as strong base is added the H+ in the medium will completely react and then to keep the stable equilibrium more acid is dissociated to give more H+.

At equivalence point there will be only conjugate base of the weak acid and no H+ will remain.

After equivalence point there will be excess added strong base in the medium.

(d)

Interpretation Introduction

Interpretation:

The scene that represents the titration at its equivalence point has to be given.

Concept introduction:

Titration:

Titration is a quantitative chemical analysis to determine the concentration of an identified analyte. The titrant is the reagent which is prepared as a standard solution of known concentration volume. The titrant reacts with the analyte to determine the analyte’s concentration. The volume of the titrant reacting with analyte is called the titration volume.

Equivalence point:

Equivalence point in the titration reaction is the point where the amount of titrant added is absolutely enough to neutralize completely the analyte. The moles of titrant and the moles of analyte are same at this point.

Blurred answer
Students have asked these similar questions
7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pH
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)

Chapter 19 Solutions

CHEMISTRY: THE MOLECULAR NATURE OF MATTE

Ch. 19.3 - Prob. 19.6AFPCh. 19.3 - Prob. 19.6BFPCh. 19.3 - Prob. 19.7AFPCh. 19.3 - Prob. 19.7BFPCh. 19.3 - Prob. 19.8AFPCh. 19.3 - Prob. 19.8BFPCh. 19.3 - Prob. 19.9AFPCh. 19.3 - Prob. 19.9BFPCh. 19.3 - Prob. 19.10AFPCh. 19.3 - Prob. 19.10BFPCh. 19.3 - Prob. 19.11AFPCh. 19.3 - Prob. 19.11BFPCh. 19.3 - Prob. 19.12AFPCh. 19.3 - Prob. 19.12BFPCh. 19.4 - Cyanide ion is toxic because it forms stable...Ch. 19.4 - Prob. 19.13BFPCh. 19.4 - Prob. 19.14AFPCh. 19.4 - Calculate the solubility of PbCl2 in 0.75 M NaOH....Ch. 19 - Prob. 19.1PCh. 19 - Prob. 19.2PCh. 19 - Prob. 19.3PCh. 19 - Prob. 19.4PCh. 19 - Prob. 19.5PCh. 19 - Prob. 19.6PCh. 19 - Prob. 19.7PCh. 19 - Prob. 19.8PCh. 19 - Does the pH increase or decrease with each of the...Ch. 19 - The scenes below depict solutions of the same...Ch. 19 - The scenes below show three samples of a buffer...Ch. 19 - What are the [H3O+] and the pH of a propanoic...Ch. 19 - What are the [H3O+] and the pH of a benzoic...Ch. 19 - Prob. 19.14PCh. 19 - Prob. 19.15PCh. 19 - Prob. 19.16PCh. 19 - Find the pH of a buffer that consists of 0.95 M...Ch. 19 - Prob. 19.18PCh. 19 - Prob. 19.19PCh. 19 - Prob. 19.20PCh. 19 - Find the pH of a buffer that consists of 0.50 M...Ch. 19 - A buffer consists of 0.22 M KHCO3 and 0.37 M...Ch. 19 - A buffer consists of 0.50 M NaH2PO4 and 0.40 M...Ch. 19 - What is the component concentration ratio,...Ch. 19 - Prob. 19.25PCh. 19 - Prob. 19.26PCh. 19 - Prob. 19.27PCh. 19 - Prob. 19.28PCh. 19 - A buffer that contains 0.40 M of a base, B, and...Ch. 19 - A buffer that contains 0.110 M HY and 0.220 M Y−...Ch. 19 - A buffer that contains 1.05 M B and 0.750 M BH+...Ch. 19 - A buffer is prepared by mixing 204 mL of 0.452 M...Ch. 19 - A buffer is prepared by mixing 50.0 mL of 0.050 M...Ch. 19 - Prob. 19.34PCh. 19 - Prob. 19.35PCh. 19 - Prob. 19.36PCh. 19 - Choose specific acid-base conjugate pairs to make...Ch. 19 - An industrial chemist studying bleaching and...Ch. 19 - Oxoanions of phosphorus are buffer components in...Ch. 19 - The scenes below depict the relative...Ch. 19 - Prob. 19.41PCh. 19 - What species are in the buffer region of a weak...Ch. 19 - Prob. 19.43PCh. 19 - Prob. 19.44PCh. 19 - Prob. 19.45PCh. 19 - Prob. 19.46PCh. 19 - Prob. 19.47PCh. 19 - Prob. 19.48PCh. 19 - Prob. 19.49PCh. 19 - Prob. 19.50PCh. 19 - Prob. 19.51PCh. 19 - Prob. 19.52PCh. 19 - Prob. 19.53PCh. 19 - Prob. 19.54PCh. 19 - Prob. 19.55PCh. 19 - Prob. 19.56PCh. 19 - Prob. 19.57PCh. 19 - Prob. 19.58PCh. 19 - Prob. 19.59PCh. 19 - Prob. 19.60PCh. 19 - Prob. 19.61PCh. 19 - Use figure 19.9 to find an indicator for these...Ch. 19 - Prob. 19.63PCh. 19 - Prob. 19.64PCh. 19 - Prob. 19.65PCh. 19 - Prob. 19.66PCh. 19 - Write the ion-product expressions for (a) silver...Ch. 19 - Write the ion-product expressions for (a)...Ch. 19 - Write the ion-product expressions for (a) calcium...Ch. 19 - Prob. 19.70PCh. 19 - The solubility of silver carbonate is 0.032 M at...Ch. 19 - Prob. 19.72PCh. 19 - Prob. 19.73PCh. 19 - The solubility of calcium sulfate at 30°C is 0.209...Ch. 19 - Prob. 19.75PCh. 19 - Prob. 19.76PCh. 19 - Prob. 19.77PCh. 19 - Calculate the molar solubility of Ag2SO4 in (a)...Ch. 19 - Prob. 19.79PCh. 19 - Prob. 19.80PCh. 19 - Prob. 19.81PCh. 19 - Prob. 19.82PCh. 19 - Prob. 19.83PCh. 19 - Write equations to show whether the solubility of...Ch. 19 - Prob. 19.85PCh. 19 - Prob. 19.86PCh. 19 - Prob. 19.87PCh. 19 - Does any solid PbCl2 form when 3.5 mg of NaCl is...Ch. 19 - Prob. 19.89PCh. 19 - Prob. 19.90PCh. 19 - Prob. 19.91PCh. 19 - A 50.0-mL volume of 0.50 M Fe(NO3)3 is mixed with...Ch. 19 - Prob. 19.93PCh. 19 - Prob. 19.94PCh. 19 - Write a balanced equation for the reaction of in...Ch. 19 - Prob. 19.96PCh. 19 - Prob. 19.97PCh. 19 - Prob. 19.98PCh. 19 - What is [Ag+] when 25.0 mL each of 0.044 M AgNO3...Ch. 19 - Prob. 19.100PCh. 19 - Prob. 19.101PCh. 19 - Prob. 19.102PCh. 19 - When 0.84 g of ZnCl2 is dissolved in 245 mL of...Ch. 19 - When 2.4 g of Co(NO3)2 is dissolved in 0.350 L of...Ch. 19 - Prob. 19.105PCh. 19 - A microbiologist is preparing a medium on which to...Ch. 19 - As an FDA physiologist, you need 0.700 L of formic...Ch. 19 - Tris(hydroxymethyl)aminomethane [(HOCH2)3CNH2],...Ch. 19 - Water flowing through pipes of carbon steel must...Ch. 19 - Gout is caused by an error in metabolism that...Ch. 19 - In the process of cave formation (Section 19.3),...Ch. 19 - Phosphate systems form essential buffers in...Ch. 19 - The solubility of KCl is 3.7 M at 20°C. Two...Ch. 19 - It is possible to detect NH3 gas over 10−2 M NH3....Ch. 19 - Manganese(II) sulfide is one of the compounds...Ch. 19 - The normal pH of blood is 7.40 ± 0.05 and is...Ch. 19 - A bioengineer preparing cells for cloning bathes a...Ch. 19 - Sketch a qualitative curve for the titration of...Ch. 19 - Prob. 19.119PCh. 19 - The scene at right depicts a saturated solution of...Ch. 19 - Prob. 19.121PCh. 19 - The acid-base indicator ethyl orange turns from...Ch. 19 - Prob. 19.123PCh. 19 - Prob. 19.124PCh. 19 - Prob. 19.125PCh. 19 - Prob. 19.126PCh. 19 - Prob. 19.127PCh. 19 - Prob. 19.128PCh. 19 - Calcium ion present in water supplies is easily...Ch. 19 - Calculate the molar solubility of Hg2C2O4 (Ksp =...Ch. 19 - Environmental engineers use alkalinity as a...Ch. 19 - Human blood contains one buffer system based on...Ch. 19 - Quantitative analysis of Cl− ion is often...Ch. 19 - An ecobotanist separates the components of a...Ch. 19 - Some kidney stones form by the precipitation of...Ch. 19 - Prob. 19.136PCh. 19 - Prob. 19.137PCh. 19 - Because of the toxicity of mercury compounds,...Ch. 19 - A 35.0-mL solution of 0.075 M CaCl2 is mixed with...Ch. 19 - Rainwater is slightly acidic due to dissolved CO2....Ch. 19 - Prob. 19.141PCh. 19 - Ethylenediaminetetraacetic acid (abbreviated...Ch. 19 - Buffers that are based on...Ch. 19 - NaCl is purified by adding HCl to a saturated...Ch. 19 - Scenes A to D represent tiny portions of 0.10 M...Ch. 19 - Prob. 19.146PCh. 19 - Prob. 19.147PCh. 19 - Prob. 19.148P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY