CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
2nd Edition
ISBN: 9781259382307
Author: Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Question
Book Icon
Chapter 19, Problem 19.127QP

(a)

Interpretation Introduction

Interpretation:

The rate formation of HbO2 has to be calculated.

Concept introduction:

Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants).  It is also said to be as rate equation.

Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.

  • The change in concentration term is divided by the respective stoichiometric coefficient.
  • The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
  • Rate of reaction is always represented by positive quantities.

(a)

Expert Solution
Check Mark

Answer to Problem 19.127QP

The rate formation of HbO2 is rate = 2.5×10-5M/s

Explanation of Solution

The given reaction is Hb(aq)+O2(aq)kHbO2(aq)

The order of the reaction is second order

The rate law for the given reaction is rate = k[Hb][O2]

Now, we have the values of rate constant and concentration of Hb and O2 , so substitute the values of these in quantities to get the rate of formation of HbO2 as follows.

rate = (2.1×106/M.s)(8.0×10-6/M)(1.5×10-6/M)

rate = 2.5×10-5M/s

(b)

Interpretation Introduction

Interpretation:

The rate consumption of O2 has to be calculated.

Concept introduction:

Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants).  It is also said to be as rate equation.

Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.

  • The change in concentration term is divided by the respective stoichiometric coefficient.
  • The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
  • Rate of reaction is always represented by positive quantities.

(b)

Expert Solution
Check Mark

Answer to Problem 19.127QP

The rate consumption of O2 is rate = 2.5×10-5M/s

Explanation of Solution

Above obtained rate for HbO2 is rate = 2.5×10-5M/s , therefore O2 is also consumed at the same rate = 2.5×10-5M/s , and from the reaction there will be the mole ratio between O2 and HbO2 is 1:1.

(c)

Interpretation Introduction

Interpretation:

The rate formation of HbO2 increases to 1.4×104M/s during exercise to meet the demand of the increased metabolism rate, what must the oxygen concentration be to sustain this rate of HbO2 formation has to be determined.

Concept introduction:

Rate law: It is an equation that related to the rate of reaction to the concentrations or pressures of substrates (reactants).  It is also said to be as rate equation.

Rate: The rate is nothing but the change in concentration of substrate (reactant) or target (product) with time.

  • The change in concentration term is divided by the respective stoichiometric coefficient.
  • The negative sign indicates that substrates (reactants) concentration decrease as per the reaction progress.
  • Rate of reaction is always represented by positive quantities.

(c)

Expert Solution
Check Mark

Answer to Problem 19.127QP

The rate formation of HbO2 increases to 1.4×104M/s during exercise to meet the demand of the increased metabolism rate, what must the oxygen concentration be to sustain this rate of HbO2 formation is [O2]=8.3×10-6 

Explanation of Solution

By increasing the rate of formation of HbO2 the concentration of Hb remains the same.  Let us assume that the temperature is constant and the above obtained rate constant value and the concentration of Hb value is substituted in the rate law then we get the value of concentration for O2 as follows.

rate = k[Hb][O2]

1.4 ×10-4 M / s = (2.1×106 / M.s)(8.0 ×10-6 M)(O2 )

[O2]=8.3×10-6 

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
the vibrational frequency of I2 is 214.5 cm-1.  (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K.  (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2.  (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?
Please correct answer and don't used hand raiting
consider a weak monoprotic acid that is 32 deprotonated at ph 4.00 what is the pka of the weak acid

Chapter 19 Solutions

CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<

Ch. 19.4 - The gas-phase reaction of nitric oxide with...Ch. 19.4 - Prob. 3PPACh. 19.4 - Prob. 3PPBCh. 19.4 - Prob. 3PPCCh. 19.4 - Prob. 19.4.1SRCh. 19.4 - Prob. 19.4.2SRCh. 19.4 - Prob. 19.4.3SRCh. 19.4 - Prob. 19.4.4SRCh. 19.4 - Prob. 19.4.5SRCh. 19.5 - Prob. 19.4WECh. 19.5 - Prob. 4PPACh. 19.5 - Prob. 4PPBCh. 19.5 - Prob. 4PPCCh. 19.5 - Prob. 19.5WECh. 19.5 - Prob. 5PPACh. 19.5 - Prob. 5PPBCh. 19.5 - Prob. 5PPCCh. 19.5 - Prob. 19.6WECh. 19.5 - Prob. 6PPACh. 19.5 - Calculate the rate constant for the first-order...Ch. 19.5 - Prob. 6PPCCh. 19.5 - Prob. 19.7WECh. 19.5 - The reaction 2A B is second order in A with a rate...Ch. 19.5 - Prob. 7PPBCh. 19.5 - Prob. 7PPCCh. 19.5 - Prob. 19.5.1SRCh. 19.5 - Prob. 19.5.2SRCh. 19.5 - Prob. 19.5.3SRCh. 19.5 - Prob. 19.5.4SRCh. 19.6 - Prob. 19.8WECh. 19.6 - Prob. 8PPACh. 19.6 - Prob. 8PPBCh. 19.6 - Prob. 8PPCCh. 19.6 - Prob. 19.9WECh. 19.6 - Prob. 9PPACh. 19.6 - Prob. 9PPBCh. 19.6 - Prob. 9PPCCh. 19.6 - Prob. 19.10WECh. 19.6 - Prob. 10PPACh. 19.6 - Prob. 10PPBCh. 19.6 - Prob. 10PPCCh. 19.6 - Prob. 19.6.1SRCh. 19.6 - Prob. 19.6.2SRCh. 19.7 - Prob. 19.11WECh. 19.7 - Prob. 11PPACh. 19.7 - Prob. 11PPBCh. 19.7 - Prob. 11PPCCh. 19.7 - Consider the gas-phase reaction of nitric oxide...Ch. 19.7 - Prob. 12PPACh. 19.7 - Prob. 12PPBCh. 19.7 - Prob. 12PPCCh. 19.7 - Prob. 19.7.1SRCh. 19.7 - Prob. 19.7.2SRCh. 19.7 - Prob. 19.7.3SRCh. 19.7 - Prob. 19.7.4SRCh. 19 - The rate of a reaction in which the reactant...Ch. 19 - The rate of a reaction in which the reactant...Ch. 19 - The rate of a reaction in which the reactant...Ch. 19 - Increasing the temperature of a reaction increases...Ch. 19 - Define activation energy. What role does...Ch. 19 - Sketch a potential energy versus reaction progress...Ch. 19 - The reaction H + H2 H2 + H has been studied for...Ch. 19 - What is meant by the rate of a chemical reaction?...Ch. 19 - Distinguish between average rate and instantaneous...Ch. 19 - What are the advantages of measuring the initial...Ch. 19 - Prob. 19.7QPCh. 19 - Consider the reaction N2(g)+3H2(g)2NH3(g) Suppose...Ch. 19 - Prob. 19.9QPCh. 19 - Prob. 19.10QPCh. 19 - Prob. 19.11QPCh. 19 - Prob. 19.12QPCh. 19 - Prob. 19.13QPCh. 19 - What are the units for the rate constants of...Ch. 19 - Consider the zeroth-order reaction: A product....Ch. 19 - Prob. 19.16QPCh. 19 - Prob. 19.17QPCh. 19 - Prob. 19.18QPCh. 19 - Prob. 19.19QPCh. 19 - Prob. 19.20QPCh. 19 - Prob. 19.21QPCh. 19 - Prob. 19.22QPCh. 19 - Prob. 19.23QPCh. 19 - Prob. 19.24QPCh. 19 - Prob. 19.25QPCh. 19 - Prob. 19.26QPCh. 19 - Prob. 19.27QPCh. 19 - Prob. 19.28QPCh. 19 - Prob. 19.29QPCh. 19 - Prob. 19.30QPCh. 19 - Prob. 19.31QPCh. 19 - Prob. 19.32QPCh. 19 - Prob. 19.33QPCh. 19 - Consider the first-order reaction X Y shown here,...Ch. 19 - Prob. 19.35QPCh. 19 - Consider the first-order reaction A B in which A...Ch. 19 - Prob. 19.37QPCh. 19 - Prob. 19.38QPCh. 19 - Prob. 19.39QPCh. 19 - Prob. 19.40QPCh. 19 - Prob. 19.41QPCh. 19 - Prob. 19.42QPCh. 19 - Prob. 19.43QPCh. 19 - Prob. 19.44QPCh. 19 - Prob. 19.45QPCh. 19 - The rate at which tree crickets chirp is 2.0 102...Ch. 19 - Prob. 19.47QPCh. 19 - The activation energy for the denaturation of a...Ch. 19 - Variation of the rate constant with temperature...Ch. 19 - Prob. 19.50QPCh. 19 - Prob. 19.51QPCh. 19 - Prob. 19.52QPCh. 19 - Prob. 19.53QPCh. 19 - What is an elementary step? What is the...Ch. 19 - Prob. 19.55QPCh. 19 - Determine the molecularity, and write the rate law...Ch. 19 - What is the rate-determining step of a reaction?...Ch. 19 - Prob. 19.58QPCh. 19 - Prob. 19.59QPCh. 19 - Classify each of the following elementary steps as...Ch. 19 - Prob. 19.61QPCh. 19 - Prob. 19.62QPCh. 19 - Prob. 19.63QPCh. 19 - Prob. 19.64QPCh. 19 - Prob. 19.65QPCh. 19 - What are the characteristics of a catalyst?Ch. 19 - Prob. 19.67QPCh. 19 - Prob. 19.68QPCh. 19 - The concentrations of enzymes in cells are usually...Ch. 19 - Prob. 19.70QPCh. 19 - Prob. 19.71QPCh. 19 - Prob. 19.72QPCh. 19 - Prob. 19.73QPCh. 19 - Prob. 19.74QPCh. 19 - Prob. 19.75QPCh. 19 - In a certain industrial process involving a...Ch. 19 - Prob. 19.77QPCh. 19 - Prob. 19.78QPCh. 19 - Explain why most metals used in catalysis arc...Ch. 19 - Prob. 19.80QPCh. 19 - Prob. 19.81QPCh. 19 - Prob. 19.82QPCh. 19 - Prob. 19.83QPCh. 19 - Prob. 19.84QPCh. 19 - The bromination of acetone is acid-catalyzed. The...Ch. 19 - The decomposition of N2O to N2 and O2 is a...Ch. 19 - Prob. 19.87QPCh. 19 - Prob. 19.88QPCh. 19 - The integrated rate law for the zeroth-order...Ch. 19 - Prob. 19.90QPCh. 19 - Prob. 19.91QPCh. 19 - Prob. 19.92QPCh. 19 - The reaction of G2 with E2 to form 2EG is...Ch. 19 - Prob. 19.94QPCh. 19 - Prob. 19.95QPCh. 19 - Prob. 19.96QPCh. 19 - Strictly speaking, the rate law derived for the...Ch. 19 - Prob. 19.98QPCh. 19 - The decomposition of dinitrogen pentoxide has been...Ch. 19 - Prob. 19.100QPCh. 19 - Prob. 19.101QPCh. 19 - Prob. 19.102QPCh. 19 - To prevent brain damage, a standard procedure is...Ch. 19 - Prob. 19.104QPCh. 19 - Prob. 19.105QPCh. 19 - Prob. 19.106QPCh. 19 - Prob. 19.107QPCh. 19 - Prob. 19.108QPCh. 19 - Prob. 19.109QPCh. 19 - Prob. 19.110QPCh. 19 - (a) What can you deduce about the activation...Ch. 19 - Prob. 19.112QPCh. 19 - Prob. 19.113QPCh. 19 - Prob. 19.114QPCh. 19 - Prob. 19.115QPCh. 19 - Prob. 19.116QPCh. 19 - Prob. 19.117QPCh. 19 - Prob. 19.118QPCh. 19 - Prob. 19.119QPCh. 19 - Prob. 19.120QPCh. 19 - Prob. 19.121QPCh. 19 - Prob. 19.122QPCh. 19 - Consider the following potential energy profile...Ch. 19 - Prob. 19.124QPCh. 19 - Prob. 19.125QPCh. 19 - Prob. 19.126QPCh. 19 - Prob. 19.127QPCh. 19 - Prob. 19.128QPCh. 19 - The following expression shows the dependence of...Ch. 19 - Prob. 19.130QPCh. 19 - The rale constant for the gaseous reaction H2(g) +...Ch. 19 - Prob. 19.132QPCh. 19 - Prob. 19.133QPCh. 19 - At a certain elevated temperature, ammonia...Ch. 19 - Prob. 19.135QPCh. 19 - The rate of a reaction was followed by the...Ch. 19 - Prob. 19.137QPCh. 19 - Prob. 19.138QPCh. 19 - Prob. 19.1KSPCh. 19 - Prob. 19.2KSPCh. 19 - Prob. 19.3KSPCh. 19 - Prob. 19.4KSP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY