Principles of Instrumental Analysis, 6th Edition
Principles of Instrumental Analysis, 6th Edition
6th Edition
ISBN: 9788131525579
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cenage Learning
Question
Book Icon
Chapter 19, Problem 19.11QAP
Interpretation Introduction

(a)

Interpretation:

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 2.4 T should be calculated.

Concept introduction:

Nuclear magnetic reasonance is a technique that is used to predict the structural formula of the compound. NMR spectroscopy involves the examination of the nucleus under the external magnetic field.

Expert Solution
Check Mark

Answer to Problem 19.11QAP

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 2.4 T is 0.9999845.

Explanation of Solution

The temperature and value of B0, magnetic field are given as 25°C and 2.4 T respectively.

The conversion of temperature from Celsius into Kelvin is shown below:

T(K)=T(°C)+273=25°C+273=298K

Therefore, the temperature is 298K.

The ratio of number of the nuclei in the upper magnetic energy state to the lower energy state is calculated by the formula,

NjN0=exp(γhB02πkT)

Where,

  • B0 is the magnetic field.
  • γ is the magnetogyric ratio.
  • Nj is the number of protons at the higher energy state.
  • N0 is the number of protons at the lower energy state.
  • T is the temperature.
  • h is the Plank’s constant equals to 6.63×1034Js .
  • k is the Boltzman constant equals to 1.38×1023JK1 .

The magnetogyric ratio for 19F is taken as 2.5181×108T1s1 from Table 19.1.

Substitute magnetogyric ratio, Plant’s constant, Boltzmann constant, temperature and magnetic field in above expression.

NjN0=exp((2.5181×108T1s1)(6.63×1034Js)(2.4T)2(3.14)(1.38×1023JK1)(298K))=exp(40.0680072×1032582.5872)=exp(0.0155×103)=0.9999845

Therefore, the relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 2.4 T is 0.9999845.

Interpretation Introduction

(b)

Interpretation:

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 4.69 T should be calculated.

Concept introduction:

Nuclear magnetic reasonance is a technique that is used to predict the structural formula of the compound. NMR spectroscopy involves the examination of the nucleus under the external magnetic field.

Expert Solution
Check Mark

Answer to Problem 19.11QAP

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 4.69 T is 0.9999697.

Explanation of Solution

The temperature and value of B0, magnetic field are given as 25°C and 4.69 T respectively.

The conversion of temperature from Celsius into Kelvin is shown below:

T(K)=T(°C)+273=25°C+273=298K

Therefore, the temperature is 298K.

The ratio of number of the nuclei in the upper magnetic energy state to the lower energy state is calculated by the formula,

NjN0=exp(γhB02πkT)

Where,

  • B0 is the magnetic field.
  • γ is the magnetogyric ratio.
  • Nj is the number of protons at the higher energy state.
  • N0 is the number of protons at the lower energy state.
  • T is the temperature.
  • h is the Plank’s constant equals to 6.63×1034Js .
  • k is the Boltzman constant equals to 1.38×1023JK1 .

The magnetogyric ratio for 19F is taken as 2.5181×108T1s1 from Table 19.1.

Substitute magnetogyric ratio, Plant’s constant, Boltzmann constant, temperature and magnetic field in above expression.

NjN0=exp((2.5181×108T1s1)(6.63×1034Js)(4.69T)2(3.14)(1.38×1023JK1)(298K))=exp(78.29956407×1032582.5872)=exp(0.0303×103)=0.9999697

Therefore, the relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 4.69 T is 0.9999697.

Interpretation Introduction

(c)

Interpretation:

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 7.05 T should be calculated.

Concept introduction:

Nuclear magnetic reasonance is a technique that is used to predict the structural formula of the compound. NMR spectroscopy involves the examination of the nucleus under the external magnetic field.

Expert Solution
Check Mark

Answer to Problem 19.11QAP

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 7.05 T is 0.9999544.

Explanation of Solution

The temperature and value of B0, magnetic field are given as 25°C and 7.05 T respectively.

The conversion of temperature from Celsius into Kelvin is shown below:

T(K)=T(°C)+273=25°C+273=298K

Therefore, the temperature is 298K.

The ratio of number of the nuclei in the upper magnetic energy state to the lower energy state is calculated by the formula,

NjN0=exp(γhB02πkT)

Where,

  • B0 is the magnetic field.
  • γ is the magnetogyric ratio.
  • Nj is the number of protons at the higher energy state.
  • N0 is the number of protons at the lower energy state.
  • T is the temperature.
  • h is the Plank’s constant equals to 6.63×1034Js .
  • k is the Boltzman constant equals to 1.38×1023JK1 .

The magnetogyric ratio for 19F is taken as 2.5181×108T1s1 from Table 19.1.

Substitute magnetogyric ratio, Plant’s constant, Boltzmann constant, temperature and magnetic field in above expression.

NjN0=exp((2.5181×108T1s1)(6.63×1034Js)(7.05T)2(3.14)(1.38×1023JK1)(298K))=exp(117.69977115×1032582.5872)=exp(0.04557×103)=0.9999544

Therefore, the relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 7.05 T is 0.9999544.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Predict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐
For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©
As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G m
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning