From the relation between E ∘ , Δ G ∘ and K, this is to be shown that the value of Δ G ∘ is negative and K > 1 for the reaction with a positive E ∘ value. Concept introduction: The substances that have a higher reduction potential will undergo reduction at the cathode while the substances that have a lower reduction potential will undergo oxidation at the anode. The expression to calculate the equilibrium constant is shown below: Δ G cell o = − RT ln K Here, R is Universal gas constant, T is temperature and K is equilibrium constant. The expression to calculate the standard Gibbs free energy of the cell is shown below: Δ G cell o = − nFE cell o Here, n is the number of electrons transferred, F is Faraday’s constant and E cell o is standard electrode potential of the cell.
From the relation between E ∘ , Δ G ∘ and K, this is to be shown that the value of Δ G ∘ is negative and K > 1 for the reaction with a positive E ∘ value. Concept introduction: The substances that have a higher reduction potential will undergo reduction at the cathode while the substances that have a lower reduction potential will undergo oxidation at the anode. The expression to calculate the equilibrium constant is shown below: Δ G cell o = − RT ln K Here, R is Universal gas constant, T is temperature and K is equilibrium constant. The expression to calculate the standard Gibbs free energy of the cell is shown below: Δ G cell o = − nFE cell o Here, n is the number of electrons transferred, F is Faraday’s constant and E cell o is standard electrode potential of the cell.
Solution Summary: The author analyzes the relation between Ecirc & Delta. The expression to calculate the standard Gibbs free energy of the cell is shown below.
From the relation between E∘, ΔG∘ and K, this is to be shown that the value of ΔG∘ is negative and K>1 for the reaction with a positive E∘ value.
Concept introduction:
The substances that have a higher reduction potential will undergo reduction at the cathode while the substances that have a lower reduction potential will undergo oxidation at the anode.
The expression to calculate the equilibrium constant is shown below:
ΔGcello=−RTlnK
Here, R is Universal gas constant, T is temperature and K is equilibrium constant.
The expression to calculate the standard Gibbs free energy of the cell is shown below:
ΔGcello=−nFEcello
Here, n is the number of electrons transferred, F is Faraday’s constant and Ecello is standard electrode potential of the cell.
1. Determine the relationship between the following molecules as identical, diastereomers, or enantiomers (6
points, 2 points each).
OH
OH
OH
A-A
OH
HOT
HO-
ACHN
and
HO-
ACHN
OH
HO
HO
°
OH
and
OH
OH
SH
and
...SH
20,0
Complete the electron pushing mechanism to
y drawing the necomery unicaciones and carved on for
Step 1: Add curved arms for the tint step, traiment with NalilĻ. The Nation
458
Step 2: Added for the second step, inalment with), how the "counterion
bar
Step 3: Daw the products of the last simplom organic and one incoganic spacient, including all nonbonding
please provide the structure for this problem, thank you!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell