MODIFIED MASTERING COLLEGE PHYSICS 18WK.
MODIFIED MASTERING COLLEGE PHYSICS 18WK.
4th Edition
ISBN: 9780136782216
Author: Knight
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19, Problem 14CQ

You have lenses with the following focal lengths: f = 25 mm, 50 mm, 100 mm, and 200 mm. Which lens or pair of lenses would you use, and in what arrangement, to get the highest-power magnifier, microscope, and telescope? Explain.

Blurred answer
Students have asked these similar questions
need help with the first part
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2
An outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940

Chapter 19 Solutions

MODIFIED MASTERING COLLEGE PHYSICS 18WK.

Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Prob. 17CQCh. 19 - Prob. 18CQCh. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - Prob. 25MCQCh. 19 - Prob. 26MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - Prob. 4PCh. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - Prob. 6PCh. 19 - An older camera has a lens with a focal length of...Ch. 19 - Prob. 8PCh. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - Prob. 10PCh. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Prob. 14PCh. 19 - Prob. 16PCh. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - Prob. 18PCh. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Prob. 20PCh. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Prob. 22PCh. 19 - Rank the following people from the most...Ch. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - Prob. 30PCh. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Prob. 44PCh. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 47PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 62GPCh. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 75GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY