
Concept explainers
(a)
The direction of the magnetic force on each of the four sides of the rectangle due to the long wire’s magnetic field.
(a)

Answer to Problem 108P
The direction of magnetic force each side of the rectangle is given in below table.
Side | Current direction | Field direction | Force direction |
Top | right | Out of the page | Down: attracted to long wire |
Bottom | Left | Out of the page | Up: repelled by long wire |
Left | Up | Out of the page | Right |
Right | down | Out of the page | left |
Explanation of Solution
Write the expression for the magnitude of magnetic field due to current carrying long wire.
Here,
The direction of magnetic field is given by right hand rule. According to the rule, when the thumb is pointed in the direction of current and the fingers are curled, the direction of fingers represents the direction of magnetic field lines. The tangent of the field line at any point gives the direction of magnetic field at that point.
Since current flows to right, magnetic field points out of the page.
Write the expression for force acting on one side of current carrying rectangular loop of wire.
Here,
The direction of force is given by the direction of
Consider the bottom side of rectangular loop, where current is flowing to the left and magnetic field is out of the page. According to right hand rule, magnetic force acts in the upward direction. That is repelled by long wire.
Consider the top side of rectangular loop, where current is flowing to the right and magnetic field is out of the page. According to right hand rule, magnetic force acts in the downward direction. That is attracted to the long wire.
Consider the left side of rectangular loop, where current is flowing up and magnetic field is out of the page. According to right hand rule, magnetic force acts towards the right.
Consider the right side of rectangular loop, where current is flowing downward and magnetic field is out of the page. According to right hand rule, magnetic force acts toward the left.
Conclusion:
Therefore, the direction of magnetic force each side of the rectangle is given in below table.
Side |
Current direction | Field direction | Force direction |
Top | right | Out of the page | Down: attracted to long wire |
Bottom | Left | Out of the page | Up: repelled by long wire |
Left | Up | Out of the page | Right |
Right | down | Out of the page | left |
(b)
The net magnetic force on the rectangular loop due to the long wire’s magnetic field.
(b)

Answer to Problem 108P
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Explanation of Solution
The magnetic field along the left and right side of the rectangular loop have same magnitude at each point of wire. The left and right side of the rectangular loop experience equal magnitude of magnetic force, since the two sides are symmetrically situated with respected to long wire. The top of the loop experiences small magnetic field than bottom side, since radial distance of top side is larger than that of the bottom side.
Since magnetic forces on left and right side of the loop are equal in magnitude and opposite in direction, they cancel each other.
Write the expression for the net force acting on the rectangular loop.
Here,
The negative sign indicates that force on top and bottom side are opposite in direction.
Write the expression to calculate magnitude of magnetic force on each side of wire.
Here,
From equation (I), write the expression for the magnitude of magnetic force on bottom wire.
Here,
From equation (I), write the expression for the magnitude of magnetic force on top wire.
Here,
Write the expression for
Here,
Write the expression for
Here,
Substitute
Here,
Substitute
Substitute
Conclusion:
Substitute
Since answer is positive, the net force must direct along the direction of force acting on the top side of rectangular loop. Therefore, net force is directed away from the long wire.
Therefore, the net magnetic force on the rectangular loop due to the long wire’s magnetic field is
(c)
The magnetic force on the long wire due to the loop.
(c)

Answer to Problem 108P
The magnetic force on the long wire due to the loop is
Explanation of Solution
According to
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Conclusion:
The net magnetic force on the rectangular loop due to the long wire’s magnetic field is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics
- Required information Two speakers vibrate in phase with each other at 523 Hz. At certain points in the room, the sound waves from the two speakers interfere destructively. One such point is 1.45 m from speaker #1 and is between 2.00 m and 4.00 m from speaker #2. The speed of sound in air is 343 m/s. How far is this point from speaker #2? marrow_forwarda) Consider the following function, where A is a constant. y(x,t) = A(x — vt). Can this represent a wave that travels along? Explain. b) Which of the following are possible traveling waves, provide your reasoning and give the velocity of the wave if it can be a traveling wave. e-(a²x²+b²²-2abtx b.1) y(x,t) b.2) y(x,t) = = A sin(ax² - bt²). 2 b.3) y(x,t) = A sin 2π (+) b.4) y(x,t) = A cos² 2π(t-x). b.5) y(x,t) = A cos wt sin(kx - wt)arrow_forwardThe capacitor in (Figure 1) is initially uncharged. The switch is closed at t=0. Immediately after the switch is closed, what is the current through the resistor R1, R2, and R3? What is the final charge on the capacitor? Please explain all steps.arrow_forward
- Suppose you have a lens system that is to be used primarily for 620-nm light. What is the second thinnest coating of fluorite (calcium fluoride) that would be non-reflective for this wavelength? × nm 434arrow_forwardThe angle between the axes of two polarizing filters is 19.0°. By how much does the second filter reduce the intensity of the light coming through the first? I = 0.106 40 xarrow_forwardAn oil slick on water is 82.3 nm thick and illuminated by white light incident perpendicular to its surface. What color does the oil appear (what is the most constructively reflected wavelength, in nanometers), given its index of refraction is 1.43? (Assume the index of refraction of water is 1.33.) wavelength color 675 × nm red (1 660 nm)arrow_forward
- A 1.50 μF capacitor is charging through a 16.0 Ω resistor using a 15.0 V battery. What will be the current when the capacitor has acquired 1/4 of its maximum charge? Please explain all stepsarrow_forwardIn the circuit shown in the figure (Figure 1), the 6.0 Ω resistor is consuming energy at a rate of 24 J/s when the current through it flows as shown. What are the polarity and emf of the battery E, assuming it has negligible internal resistance? Please explain all steps. I know you need to use the loop rule, but I keep getting the answer wrong.arrow_forwardIf you connect a 1.8 F and a 2.6 F capacitor in series, what will be the equivalent capacitance?arrow_forward
- Suppose that a particular heart defibrillator uses a 1.5 x 10-5 Farad capacitor. If it is charged up to a voltage of 7300 volts, how much energy is stored in the capacitor? Give your answer as the number of Joules.arrow_forwardThe voltage difference across an 8.3 nanometer thick cell membrane is 6.5 x 10-5volts. What is the magnitude of the electric field inside this cell membrane? (Assume the field is uniform, and give your answer as the number of Volts per meter... which is the same as the number of Newtons per Coulomb.)arrow_forwardThree identical capacitors are connected in parallel. When this parallel assembly of capacitors is connected to a 12 volt battery, a total of 3.1 x 10-5 coulombs flows through the battery. What is the capacitance of one individual capacitor? (Give your answer as the number of Farads.)arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





