Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.1, Problem 18.8P
To determine
The angle
The angular momentum of the disk about G.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the earth were a sphere, the gravitational attraction of the sun, moon, and planets would at all times be equivalent to a single force R acting at the mass center of the earth. However, the earth is actually an oblate spheroid and the gravitational system acting on the earth is equivalent to a force R and a couple M. Knowing that the effect of the couple M is to cause the axis of the earth to precess about the axis GA at the rate of one revolution in 25 800 years, determine the average magnitude of the couple M applied to the earth. Assume that the average density of the earth is 5.51 g/cm 3 , that the average radius of the earth is 6370 km, and that
( Note: This forced precession is known as the precession of the equinoxes and is not to be confused with the free precession discussed in Prob. 18.123.)
A thin, homogeneous disk of mass m and radius r spins at the constant rate w about an axle held by a fork-ended vertical rod that rotates at the constant rate w2. Determine the angular momentum HG of the disk about its mass center G.
4. (20 pts) A concrete block is lifted by a hoisting mechanism in which the cables are
securely wrapped around their respective drums. The drums are fastened together and
rotate as a single unit at their center of mass O. Combined mass of drum is 150 kg, and
radius of gyration at O is 450 mm. A constant tension of 1.8 kN is maintained in the
cable by the power unit at A.
Determine the vertical acceleration of the block and the resultant force on the bearing
at O.
600 mm
300 mm
P = 1.8 kN
m = 150 kg
ko = 450 mm
%3D
45°
300 kg
Chapter 18 Solutions
Vector Mechanics For Engineers
Ch. 18.1 - Prob. 18.1PCh. 18.1 - Prob. 18.2PCh. 18.1 - Prob. 18.3PCh. 18.1 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18.1 - Prob. 18.5PCh. 18.1 - A solid rectangular parallelepiped of mass m has a...Ch. 18.1 - Solve Prob. 18.6, assuming that the solid...Ch. 18.1 - Prob. 18.8PCh. 18.1 - Determine the angular momentum HD of the disk of...Ch. 18.1 - Prob. 18.10P
Ch. 18.1 - Prob. 18.11PCh. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Prob. 18.14PCh. 18.1 - Prob. 18.15PCh. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.19PCh. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - Prob. 18.29PCh. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Prob. 18.32PCh. 18.1 - Prob. 18.33PCh. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.35PCh. 18.1 - Prob. 18.36PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Prob. 18.44PCh. 18.1 - Prob. 18.45PCh. 18.1 - Prob. 18.46PCh. 18.1 - Prob. 18.47PCh. 18.1 - Prob. 18.48PCh. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Prob. 18.51PCh. 18.1 - Prob. 18.52PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.1 - Prob. 18.54PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change H.G of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Prob. 18.60PCh. 18.2 - Prob. 18.61PCh. 18.2 - Prob. 18.62PCh. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - A thin, homogeneous triangular plate of weight 10...Ch. 18.2 - Prob. 18.67PCh. 18.2 - Prob. 18.68PCh. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Prob. 18.72PCh. 18.2 - Prob. 18.73PCh. 18.2 - Prob. 18.74PCh. 18.2 - Prob. 18.75PCh. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.77PCh. 18.2 - Prob. 18.78PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - Prob. 18.83PCh. 18.2 - Prob. 18.84PCh. 18.2 - Prob. 18.85PCh. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - Prob. 18.88PCh. 18.2 - Prob. 18.89PCh. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - The slender rod AB is attached by a clevis to arm...Ch. 18.2 - Prob. 18.92PCh. 18.2 - The 10-oz disk shown spins at the rate 1=750 rpm,...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Prob. 18.96PCh. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - Prob. 18.99PCh. 18.2 - Prob. 18.100PCh. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - Prob. 18.103PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.2 - Prob. 18.106PCh. 18.3 - Prob. 18.107PCh. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - Prob. 18.110PCh. 18.3 - Prob. 18.111PCh. 18.3 - A solid cone of height 9 in. with a circular base...Ch. 18.3 - Prob. 18.113PCh. 18.3 - Prob. 18.114PCh. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - Prob. 18.118PCh. 18.3 - Show that for an axisymmetric body under no force,...Ch. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - Prob. 18.124PCh. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - An 800-lb geostationary satellite is spinning with...Ch. 18.3 - Solve Prob. 18.129, assuming that the meteorite...Ch. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - Prob. 18.136PCh. 18.3 - Prob. 18.137PCh. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Prob. 18.143PCh. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18.3 - Prob. 18.146PCh. 18 - Prob. 18.147RPCh. 18 - Prob. 18.148RPCh. 18 - A rod of uniform cross-section is used to form the...Ch. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - A homogeneous disk of weight W=6 lb rotates at the...Ch. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - Prob. 18.156RPCh. 18 - Prob. 18.157RPCh. 18 - Prob. 18.158RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The uniform thin pin-connected bars AB, BC, and CD have masses mÃß = 2.3 kg, mBC = 3.2 kg, and mCD= 5.0 kg, respectively. Letting R = 0.75 m, L = 1.2 m, and H= 1.55 m and knowing that bar AB rotates at a constant angular velocity WAB= 4 rad/s, compute the angular momentum of bar AB about A, of bar BC about A, and bar CD about D at the instant shown. R L B WAB + | Do H The angular momentum of bar AB about A is ( The angular momentum of bar BC about A is ( The angular momentum of bar CD about Dis ( kg.m²/s) k. kg-m²/s) k. kg-m²/s) k.arrow_forwardConsider a rigid body initially at rest and subjected to an impulsive force F contained in the plane of the body. We define the center of percussion P as the point of intersection of the line of action of F with the perpendicular drawn from G(a) Show that the instantaneous center of rotation C of the body is located on line GP at a distance GC = k2/GP on the opposite side of G. (b) Show that if the center of percussion were located at C, the instantaneous center of rotation would be located at P.arrow_forwardA thin homogeneous square plate of mass m and side a is welded to a vertical shaft AB with which it forms an angle of 45°. Knowing that the shaft rotates with a constant angular velocity o, determine the angular momentum HẠ of the plate about point A. 45° A Вarrow_forward
- Two uniform cylinders, each of weight W = 14 lb and radius r = 5 in., are connected by a belt as shown. If the system is released from rest, determine (a ) the velocity of the center of cylinder A after it has moved through 3 ft, (b) the tension in the portion of belt connecting the two cylinders.arrow_forwardA half-cylinder with mass m and radius r is released from rest in the position shown. Knowing that the half-cylinder rolls without sliding, determine (a ) its angular velocity after it has rolled through 90°, (b ) the reaction at the horizontal surface at the same instant. [Hint: Not that GO = 4r/3 π and that, by the parallel-axis theorem,arrow_forwardA slender rod of length l and weight W is pivoted at one end as shown. It is released from rest in a horizontal position and swings freely. (a ) Determine the angular velocity of the rod as it passes through a vertical position and determine the corresponding reaction at the pivot. (b ) Solve part a for W = 1.8 lb and l = 3 ft.arrow_forward
- Two uniform cylinders, each of mass m = 6 kg and radius r = 125 mm, are connected by a belt as shown. If the system is released from rest when t = 0, determine (a ) the velocity of the center of cylinder B at t=3s, ( b) the tension in the portion of belt connecting the two cylinders.arrow_forwardA homogeneous disk of mass m = 4 kg rotates at the constant rate wi = 12 rad/s with respect to arm OA, which itself rotates at the constant rate wz = 4 rad/s about the y- axis, determine: 1. Angular momentum of the disk about point A. 2. Angular momentum of the disk about point O. 3. The force-couple system representing the dynamic reactions at the support. Neglect the mass of of arm OA. 320 min 200 mm T = 100 mmarrow_forwardA 1.6-kg tube AB can slide freely on rod DE which in turn can rotate freely in a horizontal plane. Initially the assembly is rotating with an angular velocity of magnitude w = 5 rad/s and the tube is held in position by a cord. The moment of inertia of the rod and bracket about the vertical axis of rotation is 0.30 kg.m2 and the centroidal moment of inertia of the tube about a vertical axis is 0.0025 kg.m2If the cord suddenly breaks, determine (a) the angular velocity of the assembly after the tube has moved to end E, (b) the energy lost during the plastic impact at E.arrow_forward
- A slender rod of mass mo and length ; is welded at its idpoint A to the rim of the oslid circular disk of mass m and radius r. the center of the disk, which rolls without slipping, has a velocity v at the instant when A is at the top of the disk with the rod parallel to the ground. For the instant determine the angular momentum of the combined body about OUsing that HO = IDω + IRω + m2vr.arrow_forwardThe 10-oz disk shown spins at the rate w1 = 750 rpm, while axle AB rotates as shown with an angular velocity w2. Determine the maximum allowable magnitude of w2 if the dynamic reactions at A and B are not to exceed 0.25 lb each.arrow_forwardWhen the 18-kg wheel shown is attached to a balancing machine and made to spin at a rate of 12.5 rev/s, it is found that the forces exerted by the wheel on the machine are equivalent to a force-couple system consisting of a force F = (160 N)j applied at and a couple where the unit vectors form a triad that rotates with the wheel. (a ) Determine the distance from the axis of rotation to the mass center of the wheel and the products of inertia Ixy and Ixz (b) If only two corrective masses are to be used to balance the wheel statically and dynamically, what should these masses be and at which of the points A, B, D or E, should they be placed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY