EBK CHEMICAL PRINCIPLES
EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 58E
Interpretation Introduction

Interpretation: The bonding in NO, NO+ , and NO needs to be compared with the help of localized electron model and molecular orbital model.

Concept Introduction: Molecular orbital theory explained the bonding, magnetic and spectral properties of molecule. It is based on the formation of molecular orbitals by the combination of atomic orbitals. On the basis of energy and stability, these molecular orbitals can be further classified in three types:

  • Bonding molecular orbitals (BMO): They have lesser energy than atomic orbital therefore, more stable compare to atomic orbital.
  • Antibonding molecular orbitals (ABMO): They have higher energy than atomic orbital therefore less stable compared to atomic orbital.
  • Non-bonding molecular orbitals (NBMO): They have same energy as atomic orbital.

Molecular orbital diagrams represent the distribution of electrons in different molecular orbitals in increasing order of their energy. Hence, lower energy molecular orbitals occupy the first then only electron moves in higher energy orbitals.

Expert Solution & Answer
Check Mark

Answer to Problem 58E

The bond order of NO+ and NO- are justified with molecular orbital theory but it is not according to theory for NO molecule which is due to presence of unpaired e- in NO molecule.

According to MOT, NO and NO- are paramagnetic whereas NO+ is diamagnetic but according to localized electron model, only NO is paramagnetic in nature.

Explanation of Solution

Given information: Bonding in NO, NO+ , and NO can be explained with MOT and localized electron model.

Both MO (molecular orbital model) and LE (Local electron model) represent the directional nature of covalent bond. They indicate that orbitals of minimum energy overlap with each other to form the chemical bond. The atomic orbitals of same energy and symmetry overlap effectively and form strong bond. LE model is based on hybridization whereas MO model is based on the formation of molecular orbitals. The molecular orbital electronic configuration of NO , NO+ and NO-:

  • Number of electrons in N = 7
  • Number of electrons in O = 8
  • Total number of electrons in NO = 7 + 8 = 15
  • Total number of electrons in NO- = 7 + 8 +1 = 16
  • Total number of electrons in NO+ = 7 + 8 -1 = 14
  • NO = 1s)2 1s*)22s)2 2s*)22py)22pz)22px)2 2py*)1
  • NO+ = 1s)2 1s*)22s)2 2s*)22py)22pz)22px)2
  • NO- = 1s)2 1s*)22s)2 2s*)22py)22pz)22px)2 2py*)1 2pz*)1

Calculate bond order:

  Bond order =  bonding e- - antibonding e-2Bond order in NO = 10- 52=2.5Bond order in NO+ = 10- 42=3Bond order in NO = 8- 42=2

According to localized electron model, the Lewis structure of NO , NO+ and NO-

can be drawn as:

  EBK CHEMICAL PRINCIPLES, Chapter 18, Problem 58E

The bond order of NO+ and NO- are justified with molecular orbital theory but it is not according to theory for NO molecule which is due to presence of unpaired e- in NO molecule.

According to MOT, NO and NO- are paramagnetic whereas NO+ is diamagnetic but according to localized electron model, only NO is paramagnetic in nature.

Conclusion

The bond order of NO+ and NO- are justified with molecular orbital theory but it is not according to theory for NO molecule which is due to presence of unpaired e- in NO molecule.

According to MOT, NO and NO- are paramagnetic whereas NO+ is diamagnetic but according to localized electron model, only NO is paramagnetic in nature.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which of the following statements is INCORRECT? (1) In the hybridized state, mixing of the 2s orbitals with the 2px, 2py and/or 2pz orbitals can give sp, sp2 or sp3 hybrid orbitals. (2) A sp3 hybrid orbital is formed from one s-orbital and three p-orbitals to give a total of four orbitals. (3) There are no unhybrized orbitals when carbon is sp3 hybridized. (4) There are no unhybrized orbitals when carbon is sp2 hybridized.
For each statement, indicate whether it is true or false. (a) The greater the orbital overlap in a bond, the weaker the bond. [b] The greater the orbital overlap in a bond, the shorter the bond. [c] To create a hybrid orbital, you could use the s orbital on one atom with a p orbital on another atom. [d] Nonbonding electron pairs cannot occupy a hybrid orbital.
When considering the Lewis structure for HF, we might mistakenly conclude that HF contains three lone pairs on the F atom which are degenerate. Explain the nature of these three electron pairs by referring to the molecular orbital energy level diagram.

Chapter 18 Solutions

EBK CHEMICAL PRINCIPLES

Ch. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - The synthesis of ammonia gas from nitrogen gas...Ch. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - Prob. 54ECh. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59ECh. 18 - Prob. 60ECh. 18 - Prob. 61ECh. 18 - Prob. 62ECh. 18 - Prob. 63ECh. 18 - Prob. 64ECh. 18 - Prob. 65ECh. 18 - Prob. 66ECh. 18 - Prob. 67ECh. 18 - Prob. 68ECh. 18 - Prob. 69ECh. 18 - Prob. 70ECh. 18 - Prob. 71ECh. 18 - Prob. 72ECh. 18 - Prob. 73ECh. 18 - Prob. 74ECh. 18 - Prob. 75ECh. 18 - Prob. 76ECh. 18 - Prob. 77ECh. 18 - Prob. 78ECh. 18 - Prob. 79ECh. 18 - Prob. 80ECh. 18 - Prob. 81ECh. 18 - Prob. 82ECh. 18 - Prob. 83ECh. 18 - Prob. 84ECh. 18 - Prob. 85ECh. 18 - Prob. 86ECh. 18 - Prob. 87ECh. 18 - Prob. 88ECh. 18 - Prob. 89ECh. 18 - Prob. 90AECh. 18 - Prob. 91AECh. 18 - Prob. 92AECh. 18 - Prob. 93AECh. 18 - Prob. 94AECh. 18 - Prob. 95AECh. 18 - Prob. 96AECh. 18 - Prob. 97AECh. 18 - Prob. 98AECh. 18 - Prob. 99AECh. 18 - Prob. 100AECh. 18 - Prob. 101AECh. 18 - Prob. 102AECh. 18 - Prob. 103AECh. 18 - Prob. 104AECh. 18 - Prob. 105AECh. 18 - Prob. 106AECh. 18 - Prob. 107AECh. 18 - Prob. 108AECh. 18 - Prob. 109AECh. 18 - Prob. 110AECh. 18 - Prob. 111AECh. 18 - Prob. 112AECh. 18 - Hydrogen gas is being considered as a fuel for...Ch. 18 - Prob. 114AECh. 18 - Prob. 115AECh. 18 - Prob. 116AECh. 18 - Prob. 117AECh. 18 - Prob. 118AECh. 18 - Prob. 119AECh. 18 - What is the molecular structure for each of the...Ch. 18 - Prob. 121AECh. 18 - Prob. 122AECh. 18 - Prob. 123CPCh. 18 - Prob. 124CPCh. 18 - Prob. 125CPCh. 18 - Prob. 126CPCh. 18 - Prob. 127CPCh. 18 - Prob. 128CPCh. 18 - Prob. 129CPCh. 18 - Prob. 130CPCh. 18 - Prob. 131CPCh. 18 - Prob. 132CPCh. 18 - Prob. 133CP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY