PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 50EAP
The 3.0-m-long pipe in FIGURE P18.50 is closed at the top end. It is slowly pushed straight down into the water until the top end of the pipe is level with the water’s surface. What is the length L of the trapped volume of air?
FIGURE P18.50
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.435 kg0.435 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 6.56 mm6.56 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them.
If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 2.792.79, what is the initial acceleration ?a of the metal cylinder? Assume the pressure outside of the tube is 1.00 atm1.00 atm and that the top of the tube is open to the air.
A 0.389 kg0.389 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 5.54 mm5.54 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them.
If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 1.591.59, what is the initial acceleration ?a of the metal cylinder? Assume the pressure outside of the tube is 1.00 atm1.00 atm and that the top of the tube is open to the air.
A tank holds a large amount of water. A pipe is connected to the tank at the upper end and is open to the air at the lower end (see figure).The upper end of the pipe has a diameter of 20.0 cm and is h1 = 2.30-m above the ground. The lower end of the pipe has a diameter of 6.80 cm and is h2 = 0.550-m above the ground. The pressure in the water at the upper end of the pipe is 1.80 atm. The water at the upper end of the pipe has a speed of 1.631 m/s.What is the speed of the water in the pipe at the lower end of the pipe?
Chapter 18 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - Prob. 6CQCh. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - A gas undergoes the process shown in FIGURE...
Ch. 18 - Prob. 11CQCh. 18 - Prob. 12CQCh. 18 - Prob. 1EAPCh. 18 - Prob. 2EAPCh. 18 - What is the diameter of a copper sphere that has...Ch. 18 - Prob. 4EAPCh. 18 - Prob. 5EAPCh. 18 - How many atoms are in a 2.0 cm × 2.0 cm × 2.0 cm...Ch. 18 - Prob. 7EAPCh. 18 - An element in its solid phase has mass density...Ch. 18 - .0 mol of gold is shaped into a sphere. What is...Ch. 18 - What volume of aluminum has the same number of...Ch. 18 - Prob. 11EAPCh. 18 - Prob. 12EAPCh. 18 - Prob. 13EAPCh. 18 - A concrete bridge is built of 325-cm-long concrete...Ch. 18 - A surveyor has a steel measuring tape that is...Ch. 18 - Two students each build a piece of scientific...Ch. 18 - Prob. 17EAPCh. 18 -
18. What is the temperature in °F and the...Ch. 18 - Prob. 19EAPCh. 18 - .0 mol of gas at a temperature of -120°C fills a...Ch. 18 - Prob. 21EAPCh. 18 - Prob. 22EAPCh. 18 - Prob. 23EAPCh. 18 - Prob. 24EAPCh. 18 - Prob. 25EAPCh. 18 - Prob. 26EAPCh. 18 - Prob. 27EAPCh. 18 - Prob. 28EAPCh. 18 - A rigid, hollow sphere is submerged in boiling...Ch. 18 -
30. A rigid container holds hydrogen gas at a...Ch. 18 - Prob. 31EAPCh. 18 - Prob. 32EAPCh. 18 - Prob. 33EAPCh. 18 - Prob. 34EAPCh. 18 - Prob. 35EAPCh. 18 - Prob. 36EAPCh. 18 - Prob. 37EAPCh. 18 - .0050 mol of gas undergoes the process 1 2 3...Ch. 18 - Prob. 39EAPCh. 18 - Prob. 40EAPCh. 18 - Prob. 41EAPCh. 18 - Prob. 42EAPCh. 18 - Prob. 43EAPCh. 18 - A 15°C, 2.0-cm-diameter aluminum bar just barely...Ch. 18 - Prob. 45EAPCh. 18 - Prob. 46EAPCh. 18 - Prob. 47EAPCh. 18 - Prob. 48EAPCh. 18 - Prob. 49EAPCh. 18 - The 3.0-m-long pipe in FIGURE P18.50 is closed at...Ch. 18 - Prob. 51EAPCh. 18 - An electric generating plant boils water to...Ch. 18 - Prob. 53EAPCh. 18 - The air temperature and pressure in a laboratory...Ch. 18 - Prob. 55EAPCh. 18 - The mercury manometer shown in FIGURE P18.56 is...Ch. 18 - Prob. 57EAPCh. 18 - The 50 kg circular piston shown in FIGURE P18.58...Ch. 18 - Prob. 59EAPCh. 18 - .0 g of helium gas follows the process 1? 2 ?3...Ch. 18 - Prob. 61EAPCh. 18 - 62. FIGURE P18.62 shows two different processes...Ch. 18 - Prob. 63EAPCh. 18 - Prob. 64EAPCh. 18 - Prob. 65EAPCh. 18 - Prob. 66EAPCh. 18 - Prob. 67EAPCh. 18 - Prob. 68EAPCh. 18 - Prob. 69EAPCh. 18 - Prob. 70EAPCh. 18 - Prob. 71EAPCh. 18 - The cylinder in FIGURE CP18.72 has a moveable...Ch. 18 - Containers A and B in FIGURE CP18.73 hold the same...Ch. 18 - Prob. 74EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forward(a) Find the average time required for an oxygen molecule to diffuse through a 0.200-mm-thick tear layer on the cornea. (b) How much time is required to diffuse 0.500 cm3 of oxygen to the cornea if its surface area is 1.00 cm2?arrow_forwardA manometer containing water with one end connected to a container of gas has a column height difference of 0.60 m (Fig. P15.72). If the atmospheric pressure on the right column is 1.01 105 Pa, find the absolute pressure of the gas in the container. The density of water is 1.0 103 kg/m3. FIGURE P15.72arrow_forward
- (a) How high will water rise in a glass capillary tube with a 0.500-mm radius? (b) How much gravitational potential energy does the water gain? (c) Discuss possible sources of this energy.arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forwardAn airplane flies on a level path. There is a pressure difference of 520 Pa between the lower and upper surfaces of the wings. The area of each wing surface is about 190 m2. The air moves below the wings at a speed of 80.4 m/s. A- Estimate the weight of the plane. N B- Estimate the air speed above the wings. m/sarrow_forward
- Snorkels are U-shaped tubes that allow swimmers to breath while swimming just below the surface of the water (1,028 kg/m). An average human can reduce the air pressure in their lungs by 2.53 KPa, when they extend their diaphram and expand their rib cage. Answer tolerance of ±5 on the third signficant digit. a) Calculate the maximum depth a snorkeler can swim under water, while breathing through the snorkel. Number Units The U-shaped manometer shown below has one end open to the atmosphere and the other end attached to a canister of pressurized gas. Saltwater is the liquid (p = 1,025 kg/m) in the manometer which extends a height 8.21 cm above point (3). Answer tolerance of ±5 on the third signficant digit. a) Calculate the absolute pressure of the gas in the canister. Number Units (1) ha hi (2) (3)arrow_forwardAn air bubble originating from an under waterdiver has a radius of 5 mm at some depth h.When the bubble reaches the surface of thewater, it has a radius of 6.3 mm.Assuming the temperature of the air in thebubble remains constant, determine the absolute pressure at this depth h. The accelerationof gravity is 9.8 m/s2.Answer in units of Pa. b. Determine the depth of the diver.Answer in units of m.arrow_forwardA sphygmomanometer is a device used to measure blood pressure, typically consisting of an inflatable cuff and a manometer used to measure air pressure in the cuff. In a mercury sphygmomanometer, blood pressure is related to the difference in heights between two columns of mercury. The mercury sphygmomanometer shown in the figure below contains air at the cuff pressure P. P Po h A U-shaped tube is open at the right end, and this end is labeled P.. The left end is connected to a spherical bulb labeled P. The tube is filled with mercury, and the height of the mercury in the right arm is higher than in the left arm. The difference between the two heights is labeled h. The difference in mercury heights between the left tube and the right tube is h = 114 mmHg = 0.114 m, a normal systolic reading. What is the gauge systolic blood pressure P. gauge in pascals? The density of mercury is p 13.6 x 103 kg/m3 and the ambient pressure is Po = 1.01 x 105 Pa. HINT Раarrow_forward
- A 2.5-m-tall steel cylinder has a cross-sectional area of 1.5 m2. At the bottom, with a height of 0.5 m, is liquid water, on top of which is a 1-m high layer of gasoline, relative density of 0.8. The gasoline surface is exposed to atmospheric air at 101 kPa. What is the total mass of the liquid in the cylinder? 2000 kg O 1250 kg O 3250 kg O 1625 kgarrow_forwardAir is travelling at a velocity of 50 fps and exits on the other side of the converging nozzle with a velocity of 200 fps. Assume incompressible flow. Calculate the pressure difference between Section A and Section B. Flow in de O 44.57 psf O 40.88 psf O 48.72 psf O 46.22 psf O 42.65 psf O 43.61 psfarrow_forwardMercury is poured into a tall glass. Ethyl alcohol (which does not mix with mercury) is then poured on top of the mercury until the height of the ethyl alcohol itself is 110 cm. The air pressure at the top of the ethyl alcohol is one atmosphere. What is the absolute pressure at a point that is 7.10 cm below the ethyl alcohol–mercury interface? *98.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY