Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 45P
(a)
To determine
Power required to maintain a certain temperature
(b)
To determine
Required electric power.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The “Energy Guide” label on a washing machine indicates that the washer will use $85 worth of hot water per year if the water is heated by an electric water heater at an electricity rate of $0.113/kWh. If the water is heated from 12 to 55°C, determine how many liters of hot water an average family uses per week. Disregard the electricity consumed by the washer, and take the efficiency of the electric water heater to be 91 percent.
At winter design conditions, a house is projected to lose heat at a rate of 60,000 Btu/h. The internal heat gain from people, lights, and appliances is estimated to be 6000 Btu/h. If this house is to be heated by electric resistance heaters, determine the required rated power of these heaters in kW to maintain the house at constant temperature.
Assume that the efficiency of the portable solar panel shown in the figure is 19%.(a)(a)What is the amount of solar radiation required to provide rated output power?(b)(b)The camper connects the panel to a hot water heater in a 1L water container in sunlight according to (a). How long does it take to raise the temperature of this water from 1 degree Celsius to 100 degrees Celsius? Suppose there is no heat loss.
Chapter 18 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 18.1 - The energy input to an engine is 3.00 times...Ch. 18.3 - Prob. 18.2QQCh. 18.4 - Prob. 18.3QQCh. 18.6 - (a) Suppose you select four cards at random from a...Ch. 18.7 - Which of the following is true for the entropy...Ch. 18.7 - An ideal gas is taken from an initial temperature...Ch. 18.8 - True or False: The entropy change in an adiabatic...Ch. 18 - Prob. 1OQCh. 18 - Prob. 2OQCh. 18 - A refrigerator has 18.0 kJ of work done on it...
Ch. 18 - Prob. 4OQCh. 18 - Consider cyclic processes completely characterized...Ch. 18 - Prob. 6OQCh. 18 - Prob. 7OQCh. 18 - Prob. 8OQCh. 18 - A sample of a monatomic ideal gas is contained in...Ch. 18 - Assume a sample of an ideal gas is at room...Ch. 18 - Prob. 11OQCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - Prob. 6CQCh. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Discuss three different common examples of natural...Ch. 18 - The energy exhaust from a certain coal-fired...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Argon enters a turbine at a rate of 80.0 kg/min, a...Ch. 18 - Prob. 16PCh. 18 - A refrigerator has a coefficient of performance...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - In 1993, the U.S. government instituted a...Ch. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - A heat pump used for heating shown in Figure...Ch. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - An ice tray contains 500 g of liquid water at 0C....Ch. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - (a) Prepare a table like Table 18.1 for the...Ch. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - (a) Find the kinetic energy of the moving air in a...Ch. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - An idealized diesel engine operates in a cycle...Ch. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 18 - Prob. 64PCh. 18 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I often make tea in my microwave oven. I know that it takes two minutes to bring the temperature of a cup of water from room temperature to just about boiling: ready for the teabag. I looked up the characteristics of a microwave oven. Typically their power rating is about 1000 W, but I know that this is the power consumed from the power company, not the power delivered to the water. I looked up the efficiency of microwave ovens, and found that it is about 64%, meaning that a typical oven delivers 640 W to the water. I also looked up the frequency of the microwaves that an oven uses, and found thatf= 2,450 MHz. (a) How much energy is delivered to the water in the making of a cup of tea? (b) What is the wavelength of the microwave? (c) What is the energy of one microwave photon? (d) How many microwave photons are absorbed by the water in making a cup of tea?arrow_forwardA 2 ohm heater takes 5 amperes while submerged in 1400 grams of water contained in a vessel with a water equivalent to 100 grams. What is the efficiency of the system if the time required for the temperature to change by 80 degrees celsius is 3.1007 hours.arrow_forwardA technician measures the specific heat of an unidentified liquid by immersing an electrical resistor in it. Electrical energy is converted to heat, which is then transferred to the liquid for 125 s at a constant rate of 67.9 W. The mass of the liquid is 0.770 kg, and its temperature increases from 18.58°C to 22.57° C. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Circuit meltdown. Part A Find the average specific heat of the liquid in this temperature range. Assume that negligible heat is transferred to the container that holds the liquid and that no heat is lost to the surroundings. Express your answer in joules per kilogram per kelvin. V AZO ? C = J/(kg K) Submit Request Answer Part B Suppose that in this experiment heat transfer from the liquid to the container or its surroundings cannot be ignored. Is the result calculated in part (a) an overestimate or an underestimate of the average specific heat? underestimate O overestimatearrow_forward
- To heat a room with dimensions width a=3 m, length b=5 m, height h=2,2 m, approximately an electrical power of P=10 W per square meter is needed. At a cost of 0.2 soles per kW.h, how much will it cost per day to use this heater?arrow_forward(a) How much heat transfer occurs to the environment by an electrical power station that uses 1.25 × 1014 J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratio of heat transfer to the environment to work output? (c) How much work is done?arrow_forward(a) How much heat transfer occurs to the environment by an electrical power station that uses 1.25×1014 J of heat transfer into the engine with an efficiency of 42.0%? (b) What is the ratio of heat transfer to the environment to work output? (c) How much work is done?arrow_forward
- A small electric immersion heater is used to heat 100 g of water for a cup of instant coffee. The heater is labeled “200 watts”. Calculate the time required to bring all this water from 23.0 °C to 100 °C, ignoring any heat losses. Assume specific heat of water is 4.187 J/g-°C.arrow_forwardA 50 liter hot-water tank is used in the laundry service of a hospital clinic. The water in the tank is heated up using an electrical heater that is operated from 200V (mains) power line. The heater draws 8,2 A from the mains. Assume that the thermal resistance of the tank is Rt=0.04 ℃/W. The temperature of the tap water is 10℃. Maximum temperature of the water in the tank in the steady state is …. ?arrow_forwardWater flows through a shower head steadily at a rate of 10 L/min. An electric resistance heater placed in the water pipe heats the water from 16 to 43°C. Taking the density of water to be 1 kg/L, determine the electric power input to the heater, in kW. In an effort to conserve energy, it is proposed to pass the drained warm water at a temperature of 39°C through a heat exchanger to preheat the incoming cold water. If the heat exchanger has an effectiveness of 0.50 (i.e., it recovers only half of the energy that can possibly be transferred from the drained water to incoming cold water), determine the electric power input required in this case. If the price of the electric energy is 11.5 ¢/kWh, determine how much money is saved during a 10-min shower as a result of installing this heat exchanger.arrow_forward
- A toaster heater is heated up to a temperature of 584 degrees C. The emissivity of the toaster heater is 0.5 and it has an area of 5 x 10-3 m². The toaster is in the kitchen, which has an air temperature of 23 degrees C. What is the net power lost by the toaster heater?arrow_forwardsometimes the hot water produced by a solar water heater is not warm enough to mee the needs of the occupants of a building. A traditional water heater inside the building supplies additional thermal energy to the solar warmed water. How can this method still reduce the overalll amount of natural gas or electrical energy a building uses?arrow_forwardAn infrared heater for a sauna has a surface area of 0.050 m2 and an emissivity of 0.84. What temperature must it run at if the required power is 360 W? Neglect the temperature of the environment.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY