
Concept explainers
(a)
Interpretation: Half-life of copper-
Concept introduction: A process through which, an unstable nuclide loses its energy due to excess of protons or neutrons is known as radioactive decay. The cause of instability of a nuclide is its inefficiency in holding the nucleus together. Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half-life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.
The decay constant can be calculated by the formula given below.
The time of decay can be calculated by the formula given below,
To determine: The value of decay constant in
(b)
Interpretation: Half-life of copper-
Concept introduction: A process through which, an unstable nuclide loses its energy due to excess of protons or neutrons is known as radioactive decay. The cause of instability of a nuclide is its inefficiency in holding the nucleus together. Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half-life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.
The decay constant can be calculated by the formula given below.
The time of decay can be calculated by the formula given below,
To determine: The number of decay events in the first second.
(c)
Interpretation: Time in which one have to do the experiment of measuring radioactivity of copper-
Concept introduction: A process through which, an unstable nuclide loses its energy due to excess of protons or neutrons is known as radioactive decay. The cause of instability of a nuclide is its inefficiency in holding the nucleus together. Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half-life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.
The decay constant can be calculated by the formula given below.
The time of decay can be calculated by the formula given below,
To determine: The time for which the given experiment is to be done so that the radioactivity does not fall below

Want to see the full answer?
Check out a sample textbook solution
Chapter 18 Solutions
Chemistry: An Atoms First Approach
- Feedback (7/10) Draw the major product of this reaction. Ignore inorganic byproducts. Assume that the water side product is continuously removed to drive the reaction toward products. Incorrect, 3 attempts remaining Ο (CH3CH2)2NH, TSOH Select to Draw V N. 87% Retryarrow_forwardIf I want to obtain (1,1-dipropoxyethyl)benzene from 1-bromopropene, indicate the product that I have to add in addition to NaOH.arrow_forwardIndicate the products obtained when fluorobenzene reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forward
- Indicate the products obtained when chlorobenzene acid reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained by reacting benzenesulfonic acid with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained by reacting ethylbenzene with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forward
- Indicate the products obtained when tert-butylbenzene reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained when acetophenone reacts with a sulfonitric acid mixture (HNO3 + H2SO4). Indicate the majority if necessary.arrow_forwardIndicate the products obtained from the reaction of N-(4-methylphenyl)acetamide with a sulfonitric acid mixture (H2SO4 + HNO3). Indicate the majority if necessary.arrow_forward
- Indicate the products obtained from the reaction of 4-(trifluoromethyl)benzonitrile with a sulfonitric mixture (H2SO4 + HNO3). Indicate the majority if necessary.arrow_forwardIndicate the products obtained in the reaction of p-Toluidine with a sulfonitric acid mixture (H2SO4 + HNO3). Indicate the majority if necessary.arrow_forwardIndicate the products obtained from the reaction of 4-methylbenzonitrile with a sulfonitric acid mixture (H2SO4 + HNO3). Indicate the majority if necessary.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




