
Interpretation:
The product of the reaction of propanal with the given reagents has to be stated.
Concept Introduction:
Lithium aluminum hydride and sodium borohydride are strong reducing agents. They are inorganic compounds which are used as the reducing agents in
In the reaction of
By catalytic hydrogenation, aldehydes are reduced to primary alcohols. Grignard reagents react with ketones and aldehydes to form alcohols. These reactions are nucleophilic addition reactions. The Grignard reagent adds to the carbonyl group of aldehydes and ketones due to electronegativity difference between carbon and oxygen.
An organolithium reagent acts like a good nucleophiles and strong bases. They used for the conversion of aldehydes and ketones into primary and secondary alcohols. Acetal is an organic compound with general formula

Answer to Problem 27P
Solution:
a) The product of the reaction of propanal with lithium aluminum hydride, followed by water is shown below.
b) The product of the reaction of propanal with sodium borohydride, methanol is shown below.
c) The product of the reaction of propanal with hydrogen (nickel catalyst) is shown below.
d) The product of the reaction of propanal with methylmagnesium iodide, followed by dilute acid is shown below.
e) The product of the reaction of propanal with sodium acetylide, followed by dilute acid is shown below.
f) The product of the reaction of propanal with phenyllithium, followed by dilute acid is shown below.
g) The product of the reaction of propanal with methanol containing dissolved hydrogen chloride is shown below.
h) The product of the reaction of propanal with ethylene glycol, p-toluenesulfonic acid, benzene is shown below.
i) The product of the reaction of propanal with aniline
j) The product of the reaction of propanal with dimethylamine, p-toluenesulfonic acid, benzene is shown below.
k) The product of the reaction of propanal with hydroxylamine is shown below.
l) The product of the reaction of propanal with hydrazine is shown below.
m) The product of the reaction of propanal with product of part (l) heated in triethylene glycol with sodium hydroxide is shown below.
n) The product of the reaction of propanal with p-Nitrophenylhydrazine is shown below.
o) The product of the reaction of propanal with semicarbazide is shown below.
p) The product of the reaction of propanal with ethylidenetriphenylphosphorane is shown below.
q) The product of the reaction of propanal with sodium cyanide with addition of sulfuric acid is shown below.
r) The product of the reaction of propanal with chromic acid is shown below.
Explanation of Solution
a) The product obtained by the reaction between, propanal and the reagent, lithium aluminum hydride, followed by water.
The reaction of propanal with lithium aluminum hydride, followed by water gives primary alcohol as the final product. The product of this reaction is shown below.
b) The product obtained by the reaction between propanal and the reagent, sodium borohydride, methanol.
The reaction of propanal with sodium borohydride, followed by methanol gives primary alcohol as the final product. The product of this reaction is shown below.
c) The product obtained by the reaction between the given compound, propanal and the reagent, hydrogen (nickel catalyst).
The reaction of propanal with hydrogen in the presence of nickel catalyst gives
d) The product obtained by the reaction between propanal and the reagent, methylmagnesium iodide, followed by dilute acid.
The reaction of propanal with methylmagnesium iodide that is Grignard reagent, followed by dilute acid gives alcohol as the final product. The product of this reaction is shown below.
e) The product obtained by the reaction between propanal and the reagent, sodium acetylide, followed by dilute acid.
The reaction of aldehyde with sodium acetylide is fundamentally similar to the Grignard reaction. The reaction of propanal with sodium acetylide, followed by dilute acid gives alcohol. The product of this reaction is shown below.
f) The product obtained by the reaction between propanal and the reagent, phenyllithium, followed by dilute acid.
The reaction of propanal with phenyllithium, followed by dilute acid gives alcohol as the final product. The product of this reaction is shown below.
g) The product obtained by the reaction between the given compound, propanal and the reagent, methanol containing dissolved hydrogen chloride.
The reaction of aldehydes with two equivalents of an alcohol results in the formation of acetals. The product of this reaction is shown below.
h) The product obtained by the reaction between the given compound, propanal and the reagent, Ethylene glycol, p-toluenesulfonic acid, benzene.
In the reaction of aldehyde with ethylene glycol, p-toluenesulfonic acid and benzene, the protection of the carbonyl group of aldehyde takes place. For carbonyl protection, ethylene glycol is the commonly used group. The final product resembles like ether and known as ketal during the protection of carbonyl group using ethylene glycol. The product of this reaction is shown below.
i) The product obtained by the reaction between propanal and the reagent, aniline
The reaction of aldehyde with primary
j) The product obtained by the reaction between propanal and the reagent, dimethylamine, p-toluenesulfonic acid, benzene.
The reaction of aldehyde with secondary amine forms enamine as the final product. The reaction of propanal with dimethylamine in the presence of p-toluenesulfonic acid and benzene gives
k) The product obtained by the reaction between the given compound, propanal and the reagent, hydroxylamine.
The reaction of aldehyde with hydroxylamine gives oxime as the final product. The reaction of propanal with hydroxylamine results in the formation of propionaldehyde oxime. The product of this reaction is shown below.
l) The product obtained by the reaction between the given compound, propanal and the reagent, hydrazine.
The reaction of aldehyde with hydrazine gives hydrazone. The reaction of propanal with hydrazine gives propionaldehyde hydrazone as the final product. The product of this reaction is shown below.
m) The product obtained by the reaction between propanal and the product of part (l) heated in triethylene glycol with sodium hydroxide.
The reaction of aldehyde with hydrazine gives hydrazone. The reaction of propanal with hydrazine gives propionaldehyde hydrazone as the final product. The heating of propionaldehyde hydrazone in triethylene glycol with sodium hydroxide forms
n) The product obtained by the reaction between propanal and p-nitrophenylhydrazine.
The reaction of aldehyde with hydrazine gives hydrazone. The reaction of propanal with p-Nitrophenylhydrazine gives propionaldehyde phenylhydrazone as the final product. The product of this reaction is shown below.
o) The product obtained by the reaction between propanal and semicarbazide.
The reaction of aldehyde with semicarbazide results in the formation of semicarbazone. The reaction of propanal with
p) The product obtained by the reaction between the given compound, propanal and ethylidenetriphenylphosphorane.
The reaction of propanal with ethylidenetriphenylphosphorane gives
q) The product obtained by the reaction between propanal and sodium cyanide with addition of sulfuric acid.
The reaction of aldehyde with sodium cyanide results in the formation of cyanohydrin. The product of this reaction is shown below.
r) The product obtained by the reaction between propanal and chromic acid.
The reaction of propanal with chromic acid gives propionic acid as the final product. The product of this reaction is shown below.
Want to see more full solutions like this?
Chapter 18 Solutions
Organic Chemistry - Standalone book
- Given the reaction R + Q → P, indicate the rate law with respect to R, with respect to P and with respect to P.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardk₁ Given the reaction A B, indicate k-1 d[A] (A). the rate law with respect to A: (B). the rate law with respect to B: d[B] dt dtarrow_forward
- k₁ Given the reaction R₂ R + R, indicate k-1 (A). the rate law with respect to R2: (B). the rate law with respect to R: d[R₂] dt d[R] dtarrow_forwardGiven the reaction R+ Q → P, indicate (A). the rate law with respect to P: (B). the rate law with respect to R: (C). the rate law with respect to Q: d[P] dt d[R] dt d[Q] dtarrow_forwardThe reaction for obtaining NO2 from NO and O2 has the rate equation: v = k[NO]2[O2]. Indicate which of the following options is correct.(A). This rate equation is inconsistent with the reaction consisting of a single trimolecular step.(B). Since the overall order is 3, the reaction must necessarily have some trimolecular step in its mechanism.(C). A two-step mechanism: 1) NO + NO ⇄ N2O2 (fast); 2) N2O2 + O2 → NO2 + NO2 (slow).(D). The mechanism must necessarily consist of three unimolecular elementary steps with very similar rate constants.arrow_forward
- a. What is the eluent used in the column chromatography here (a “silica plug filtration” is essentially a very short column)? b. The spectroscopy of compound 5b is described in the second half of this excerpt, including 1H-NMR and 13C-NMR (which you will learn about in CHEM 2412L), MS (which you will learn about later in CHEM 2411L) and IR. One of the IR signals is at 3530 cm-1. What functional group does this indicate might be present in compound 5b?arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwarda. The first three lines of this procedure describe the reaction used to make compound 5b. In the fourth line, hexane and sodium bicarbonate are added. What organic lab technique is being used here? b. What is the purpose of the Na2SO4? c. What equipment would you use to “concentrate [a solution] under reduced pressure”?arrow_forward
- When N,N-dimethylaniline is treated with bromine both the ortho and para products are observed. However when treated with a mixture of nitric acid and sulfuric acid only the meta product is observed. Explain these results and support your answer with the appropriate drawings *Hint amines are bases* N HNO3 H2SO4 N NO2 N Br2 N Br + N 8-8-8 FeBr3 Brarrow_forwardDraw a mechanism that explains the formation of compound OMe SO3H 1. Fuming H2SO4arrow_forwardConsider the following two acid-base reactions: OH OHI Based on what you know about the compounds and their acidity, which direction would you expect both of these reactions to proceed? Show your reasoning. A pKa table has been provided in case you need it. Functional group Example pka CHA -50 Alkane -35 Amine : NH3 Alkyne RH 25 Water HO-H 169 16 10 Protonated amines NH 10 5 Carboxylic acids OH Hydrochloric acid HCI A chemist intends to run the following reaction on the three substrates shown below: H₂O R-CI product room temp. Cl Cl (1) (2) (3) They find one will react quickly, one slowly, and one will not react at all. Which is which, and why? HINT: What is the reaction they're trying to do? Does that mechanism tell you anything about why something would be favored?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





