Chemistry: The Molecular Science
Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 23QRT
Interpretation Introduction

Interpretation:

Binding energy per nucleon for the two isotopes of boron has to be calculated and their stability has to be compared.

Concept Introduction:

Binding energy is a short strong force that is present in the nucleus which holds the protons together by overcoming the electrostatic repulsive forces between them.  Whenever there is a change in energy, a corresponding change in mass is also observed and this can be given by the equation shown below,

    ΔE = (Δm)c2

When more particles combine to form nuclear there is a great change in mass and energy.  The nuclear stabilities can be compared more appropriately by dividing the binding energy of nucleus with the number of nucleons.  The result obtained is the binding energy per nucleon.  Protons and neutrons are known as nucleons.  Binding energy is represented as Eb.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given equations in the problem statement is,

    5H11 + 5n01 B5105H11 + 6n01 B511

For B510:

The change in mass can be calculated as shown below,

Δm = (5×1.00783g/molH11)+(5×1.00867g/moln01)10.01294g/molB510 = 5.03915g/mol+5.04335g/mol10.01294g/mol = 10.0825g/mol10.01294g/mol = 0.06956g/mol

Nuclear binding energy can be calculated as shown below,

ΔE = (Δm)c2 = (0.06956g1mol×1kg1000g)×(2.99792×108m/s)2×1J1kgm2s-2×1kJ1000J = 0.6251×1010kJ/mol = 6.251×109kJ/mol

Binding energy per nucleon can be calculated as shown below,

There is a total of ten nucleons in boron-10.  Hence, the binding energy per nucleon can be calculated as,

    Eb = 6.251×109kJ10molnucleons = 6.251×108kJ/mol

Binding energy per nucleon in B510 is 6.251×108kJ/mol.

For B511:

The change in mass can be calculated as shown below,

Δm = (5×1.00783g/molH11)+(6×1.00867g/moln01)11.00931g/molB511 = 5.03915g/mol+6.05202g/mol11.00931g/mol = 11.09117g/mol11.00931g/mol = 0.08186g/mol

Nuclear binding energy can be calculated as shown below,

ΔE = (Δm)c2 = (0.08186g1mol×1kg1000g)×(2.99792×108m/s)2×1J1kgm2s-2×1kJ1000J = 0.7357×1010kJ/mol = 7.357×109kJ/mol

Binding energy per nucleon can be calculated as shown below,

There is a total of eleven nucleons in boron-11.  Hence, the binding energy per nucleon can be calculated as,

    Eb = 7.357×109kJ11molnucleons = 6.688×108kJ/mol

Binding energy per nucleon in B511 is 6.688×108kJ/mol.

On comparing the binding energy per nucleon for B510 and B511, it is found that B511 has more binding energy per nucleon than B510.  Hence, B511 is more stable than B510.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. a) Give a suitable rationale for the following cyclization, stating the type of process involved (e.g. 9-endo-dig), clearly showing the mechanistic details at each step. H CO₂Me 1) NaOMe 2) H3O® CO₂Me
2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be catalyzed the propylene molecules must first adsorb onto the surface. In order to completely cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that have been absorbed onto the platinum surface.
Chem 141, Dr. Haefner 2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.

Chapter 18 Solutions

Chemistry: The Molecular Science

Ch. 18.4 - Prob. 18.6PSPCh. 18.4 - Prob. 18.7PSPCh. 18.4 - Prob. 18.6ECh. 18.4 - Prob. 18.7CECh. 18.5 - Prob. 18.8ECh. 18.5 - Prob. 18.9CECh. 18.6 - Prob. 18.10ECh. 18.6 - Prob. 18.11ECh. 18.7 - Prob. 18.12ECh. 18.8 - Prob. 18.13ECh. 18.8 - Prob. 18.14ECh. 18.9 - Prob. 18.15ECh. 18 - Prob. 1SPCh. 18 - Prob. 2SPCh. 18 - Prob. 3SPCh. 18 - Prob. 4SPCh. 18 - Prob. 5SPCh. 18 - Prob. 1QRTCh. 18 - Prob. 2QRTCh. 18 - Prob. 3QRTCh. 18 - Prob. 4QRTCh. 18 - Prob. 5QRTCh. 18 - Prob. 6QRTCh. 18 - Prob. 7QRTCh. 18 - Prob. 8QRTCh. 18 - Prob. 9QRTCh. 18 - Complete the table.Ch. 18 - Prob. 11QRTCh. 18 - Prob. 12QRTCh. 18 - Prob. 13QRTCh. 18 - Prob. 14QRTCh. 18 - Prob. 15QRTCh. 18 - Prob. 16QRTCh. 18 - Prob. 17QRTCh. 18 - Prob. 18QRTCh. 18 - Prob. 19QRTCh. 18 - Prob. 20QRTCh. 18 - Prob. 21QRTCh. 18 - Prob. 22QRTCh. 18 - Prob. 23QRTCh. 18 - Prob. 24QRTCh. 18 - Prob. 25QRTCh. 18 - Prob. 26QRTCh. 18 - Prob. 27QRTCh. 18 - Prob. 28QRTCh. 18 - Prob. 29QRTCh. 18 - Prob. 30QRTCh. 18 - Prob. 31QRTCh. 18 - Prob. 32QRTCh. 18 - Prob. 33QRTCh. 18 - Prob. 34QRTCh. 18 - Prob. 35QRTCh. 18 - Prob. 36QRTCh. 18 - Prob. 37QRTCh. 18 - Prob. 38QRTCh. 18 - Prob. 39QRTCh. 18 - Prob. 40QRTCh. 18 - Prob. 41QRTCh. 18 - Prob. 42QRTCh. 18 - Prob. 43QRTCh. 18 - Prob. 44QRTCh. 18 - Prob. 45QRTCh. 18 - Prob. 46QRTCh. 18 - Prob. 47QRTCh. 18 - Prob. 48QRTCh. 18 - Prob. 49QRTCh. 18 - Prob. 50QRTCh. 18 - Prob. 51QRTCh. 18 - Prob. 52QRTCh. 18 - Prob. 53QRTCh. 18 - Prob. 54QRTCh. 18 - Prob. 55QRTCh. 18 - Prob. 56QRTCh. 18 - Prob. 57QRTCh. 18 - Prob. 58QRTCh. 18 - Prob. 59QRTCh. 18 - Prob. 60QRTCh. 18 - Prob. 61QRTCh. 18 - Prob. 62QRTCh. 18 - Prob. 63QRTCh. 18 - Prob. 64QRTCh. 18 - Prob. 65QRTCh. 18 - Prob. 66QRTCh. 18 - Prob. 67QRTCh. 18 - Prob. 68QRTCh. 18 - Prob. 69QRTCh. 18 - Prob. 70QRTCh. 18 - Prob. 71QRTCh. 18 - Prob. 72QRTCh. 18 - Prob. 73QRTCh. 18 - Prob. 74QRTCh. 18 - Prob. 75QRTCh. 18 - Prob. 76QRTCh. 18 - Prob. 77QRTCh. 18 - Prob. 78QRTCh. 18 - Prob. 79QRTCh. 18 - Prob. 80QRTCh. 18 - Prob. 81QRTCh. 18 - Prob. 82QRTCh. 18 - Prob. 83QRTCh. 18 - Prob. 84QRTCh. 18 - Prob. 85QRTCh. 18 - Prob. 86QRTCh. 18 - Prob. 87QRTCh. 18 - Prob. 88QRTCh. 18 - Prob. 89QRTCh. 18 - Prob. 91QRTCh. 18 - Prob. 92QRTCh. 18 - Prob. 93QRTCh. 18 - Prob. 94QRTCh. 18 - Prob. 95QRTCh. 18 - Prob. 96QRTCh. 18 - Prob. 18.ACPCh. 18 - Prob. 18.BCPCh. 18 - Prob. 18.CCPCh. 18 - Prob. 18.DCPCh. 18 - Prob. 18.ECP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning