Concept explainers
(a)
Interpretation:
The missing particle in the
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. This is a natural transmutation reaction where the nuclide of one element is converted into nuclide of another element. Radioactive decay happens naturally. This can also be done artificially in the laboratory by means of bombardment reaction. Bombardment reaction is the one where the target nuclei is hit by a small fast moving high-energy particle to give a daughter nuclide and a small particle such as proton or neutron. This can be represented in form of a nuclear equation. A balanced nuclear equation is the one in which the sum of subscripts on both sides are equal and sum of superscripts on both sides are equal.
(a)
Answer to Problem 15QRT
The missing particle in the given equation is
Explanation of Solution
Given nuclear equation is,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 22 and the sum of subscript in the product side is 11. This has to be balanced in the reactant side. There is a short of 22 in the superscript and 11 in the subscript when comparing with the reactant side. The particle with mass number 22 and
Missing particle in the given nuclear equation is identified as
(b)
Interpretation:
The missing particle in the nuclear equation has to be filled.
Concept Introduction:
Refer part (a).
(b)
Answer to Problem 15QRT
The missing particle in the given equation is
Explanation of Solution
Given nuclear equation is,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 122 and the sum of subscript in the product side is 54. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 122. Sum of subscript is 53. There is an excess of 1 in the subscript when comparing with the reactant side. The particle with mass number 0 and atomic number -1 is electron. Therefore, the missing particle is
Missing particle in the given nuclear equation is identified as
(c)
Interpretation:
The missing particle in the nuclear equation has to be filled.
Concept Introduction:
Refer part (a).
(c)
Answer to Problem 15QRT
The missing particle in the given equation is
Explanation of Solution
Given nuclear equation is,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 4 and the sum of subscript in the product side is 2. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 210. Sum of subscript is 84. There is a short of 206 in the superscript and 82 in the subscript when comparing with the product side. The particle with mass number 206 and atomic number 82 is Lead. Therefore, the missing particle is
Missing particle in the given nuclear equation is identified as
(d)
Interpretation:
The missing particle in the nuclear equation has to be filled.
Concept Introduction:
Refer part (a).
(d)
Answer to Problem 15QRT
The missing particle in the given equation is
Explanation of Solution
Given nuclear equation is,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 195 and the sum of subscript in the product side is 78. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 195. Sum of subscript is 79. There is an excess of 1 in subscript on the reactant side when comparing with the product side. The particle with mass number 0 and atomic number -1 is an electron. Therefore, the missing particle is
Missing particle in the given nuclear equation is identified as
(e)
Interpretation:
The missing particle in the nuclear equation has to be filled.
Concept Introduction:
Refer part (a).
(e)
Answer to Problem 15QRT
The missing particle in the given equation is
Explanation of Solution
Given nuclear equation is,
In a nuclear equation the sum of subscript on both sides has to be equal and the sum of superscripts on both sides has to be equal. By looking into the above equation, the sum of superscript in the product side is 5 and the sum of subscript in the product side is 0. This has to be balanced in the reactant side. Sum of superscript in the reactant side is 257. Sum of subscript is 102. There is a short of 252 in the superscript and 102 in the subscript when comparing with the reactant side. The particle with mass number 252 and atomic number 102 is Nobelium. Therefore, the missing particle is
Missing particle in the given nuclear equation is identified as
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry: The Molecular Science
- Nonearrow_forwardJON Determine the bund energy for UCI (in kJ/mol Hcl) using me balanced chemical equation and bund energies listed? का (My (9) +36/2(g)-(((3(g) + 3(g) A Hryn = -330. KJ bond energy и-н 432 bond bond C-1413 C=C 839 N-H 391 C=O 1010 S-H 363 б-н 467 02 498 N-N 160 N=N 243 418 C-C 341 C-0 358 C=C C-C 339 N-Br 243 Br-Br C-Br 274 193 614 (-1 214||(=olin (02) 799 C=N 615 AALarrow_forwardDetermine the bond energy for HCI ( in kJ/mol HCI) using he balanced cremiculequecticnand bund energles listed? also c double bond to N is 615, read numbets carefully please!!!! Determine the bund energy for UCI (in kJ/mol cl) using me balanced chemical equation and bund energies listed? 51 (My (9) +312(g)-73(g) + 3(g) =-330. KJ спод bond energy Hryn H-H bond band 432 C-1 413 C=C 839 NH 391 C=O 1010 S-1 343 6-H 02 498 N-N 160 467 N=N C-C 341 CL- 243 418 339 N-Br 243 C-O 358 Br-Br C=C C-Br 274 193 614 (-1 216 (=olin (02) 799 C=N 618arrow_forward
- Differentiate between single links and multicenter links.arrow_forwardI need help on my practice final, if you could explain how to solve this that would be extremely helpful for my final thursday. Please dumb it down chemistry is not my strong suit. If you could offer strategies as well to make my life easier that would be beneficialarrow_forwardNonearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning