Outline the steps involved in processing (a) ceramic and (b) glasses.
a)
Outline the steps involved in processing of ceramics and (b) glasses.
Explanation of Solution
Steps of Ceramics Processing:-
Step #1: Milling & Raw Material Procurement
The raw materials used in the process are milled materials typically found in mining sites that have been reduced from a larger size to a smaller size or even in some cases, it will be pulverized depends upon the end product required.
Step #2: Sizing
Here it is! During this step of the processing sequence, the materials which have gone through the milling, as well as the procurement process should be sized in order to separate the material desirable, from the ones non-usable. By means of controlling the size of the particle, it would result in a proper bonding along with a smooth surface of the finished product.
Step #3: Batching
This part of the process may be called “blending”. It calculates weighing, amounts and an initial blend of the raw materials. To have a material flow consistently into a pub mill hopper, in this process, Vibratory Feeders may be applied if you are having a lighter load capacity and the dusty hazardous environment.
Step #4: Mixing
To get a more physically and chemically homogeneous material before forming, the ceramic powder constituents are combined applying the process of blinging or mixing. Pug mills are the most favored piece of machinery utilized in the concerned step of the process while dealing with dry mixes.
Step #5: Forming
For forming, the materials including pastes, dry powders, or slurries are first consolidated, then molded to form a cohesive body of the desired end product. When it comes to dry forming, to get the desired shape, vibratory compaction may be used.
Step #6: Drying
The formed materials not only hold water but also a binder in its mix. This may lead to shrinkage, distortion, or warping of the product. Usually, convection drying happens to be the most used method where heated air gets circulated around the piece of ceramic which lessens the risk of those imperfections in the finished product.
Step #7: Glazing
This step is added to the process prior to firing. Typically, the glaze consists of oxides that give the product the desired finish look. All the raw materials are grounded in an attrition mill and ball mill. Customers are provided withVibratory Screeners which screened the glaze for giving the mixture a consistency which is not just uniform, but when applied to any of the ceramics, would be even and smooth. The glaze may be applied by dipping or spraying.
Step #8: Firing
The ceramics pass through a controlled heat process where the oxides are consolidated into a dense, cohesive body made up of uniform grain.
b)
Outline the steps involved in processing of glasses.
Explanation of Solution
Steps involved in processing glasses:-
Step #1: Melting and Refining
In order to make clear glass, the right set of raw materials is required. It comprises of Na2O (sodium oxide) from soda ash, SiO2 (silica sand), MgO (dolomite),CaO (calcium oxide) from limestone/dolomite, and Al2O3 (feldspar). The ingredients get mixed in their right proportions. The entire batch gets flown into a furnace that is heated as much as to 1500 degree Celsius.
Step #2: Float bath
From the furnace, the molten material goes into the float bath comprising of a mirror-like surface created from the molten tin. This material, then, flows into the bath at 1500 degree Celsius. It leaves the bath approximately at 650 degree Celsius. At the exit, its shape looks like a solid ribbon.
Step #3: Coating for reflective glass
If a reflective glass surface which helps in having the indoors cooler, is produced, then the procedures of coating are followed where either a soft or a hard coat gets applied on the ribbon surface which was cooled at high temperatures.
Step #4: Annealing
For removing the internal stresses built up in the glass, a procedure known as annealing is conducted. The procedure helps the glass ribbon to get through a layer that gets rid of any stresses on the surface of the glass, gradually cooling it to create the final hardened form. Because of it, cutting the glass and shaping it accordingly become easier.
Step #5: Inspecting
Through advanced and acute inspection technology, over 100 million inspections may be conducted throughout the glass manufacturing process for identifying stresses, air bubbles, or grains of sand which refuse to melt. It is vital in quality-proofing the finished form of glass.
Step #6: Cutting to order
Diamond steels are used to trim and cut the glass ribbons into square shapes.
Want to see more full solutions like this?
Chapter 18 Solutions
Manufacturing Engineering & Technology
- A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom ↑ Z C BY NC SA b x B у D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in с 4.5 in The tension in rope AB is lb The tension in rope AC is lb The tension in rope AD is lbarrow_forwardThe airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.arrow_forwardThe hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Fropearrow_forward
- Determine the tension developed in cables AB and AC and the force developed along strut AD for equilibrium of the 400-lb crate. x. 5.5 ft C 2 ft Z 2 ft D 6 ft B 4 ft A 2.5 ftarrow_forwardA block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z D (c, 0, d) C (a, 0, b), A e B y f m BY NC SA x 2016 Eric Davishahl Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m C 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is The compressive force in bar AB is The tension in cable S is N. kg.arrow_forwardTwo squirrels are sitting on the rope as shown. The squirrel at A has a weight of 1.2 lb. The squirrel at B found less food this season and has a weight of 0.8 lb. The angles 0 and > are equal to 50° and 60° respectively. Determine the tension force in each of the rope segments (T₁ in segment, T₂ in segment Я, and T3 in segment DD) as well as the angle a in degrees. Ө A α B Note the figure may not be to scale. T₁ = lb lb T2 T3 = = lb απ deg A BY NC SA 2013 Michael Swanbomarrow_forward
- Each cord can sustain a maximum tension of 500 N. Determine the largest mass of pipe that can be supported. B 60° A E Harrow_forward2. Link BD consists of a single bar 1 in. wide and 0.5 in. thick. Knowing that each pin has a in. diameter, determine (a) the maximum value of the normal stress in link BD and the bearing stress in link BD if 0 = 0, (b) the maximum value of the normal stress in link BD if 0 = 90. -6 in.- 12 in. 30° D 4 kipsarrow_forwardIn the image is a right rectangular pyramid of total mass m. Note the location of point Q. Determine the inertia dyadic for the pyramid P, relative to point Q for e hat unit vectors.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY