
Outline the steps involved in processing (a) ceramic and (b) glasses.
a)

Outline the steps involved in processing of ceramics and (b) glasses.
Explanation of Solution
Steps of Ceramics Processing:-
Step #1: Milling & Raw Material Procurement
The raw materials used in the process are milled materials typically found in mining sites that have been reduced from a larger size to a smaller size or even in some cases, it will be pulverized depends upon the end product required.
Step #2: Sizing
Here it is! During this step of the processing sequence, the materials which have gone through the milling, as well as the procurement process should be sized in order to separate the material desirable, from the ones non-usable. By means of controlling the size of the particle, it would result in a proper bonding along with a smooth surface of the finished product.
Step #3: Batching
This part of the process may be called “blending”. It calculates weighing, amounts and an initial blend of the raw materials. To have a material flow consistently into a pub mill hopper, in this process, Vibratory Feeders may be applied if you are having a lighter load capacity and the dusty hazardous environment.
Step #4: Mixing
To get a more physically and chemically homogeneous material before forming, the ceramic powder constituents are combined applying the process of blinging or mixing. Pug mills are the most favored piece of machinery utilized in the concerned step of the process while dealing with dry mixes.
Step #5: Forming
For forming, the materials including pastes, dry powders, or slurries are first consolidated, then molded to form a cohesive body of the desired end product. When it comes to dry forming, to get the desired shape, vibratory compaction may be used.
Step #6: Drying
The formed materials not only hold water but also a binder in its mix. This may lead to shrinkage, distortion, or warping of the product. Usually, convection drying happens to be the most used method where heated air gets circulated around the piece of ceramic which lessens the risk of those imperfections in the finished product.
Step #7: Glazing
This step is added to the process prior to firing. Typically, the glaze consists of oxides that give the product the desired finish look. All the raw materials are grounded in an attrition mill and ball mill. Customers are provided withVibratory Screeners which screened the glaze for giving the mixture a consistency which is not just uniform, but when applied to any of the ceramics, would be even and smooth. The glaze may be applied by dipping or spraying.
Step #8: Firing
The ceramics pass through a controlled heat process where the oxides are consolidated into a dense, cohesive body made up of uniform grain.
b)

Outline the steps involved in processing of glasses.
Explanation of Solution
Steps involved in processing glasses:-
Step #1: Melting and Refining
In order to make clear glass, the right set of raw materials is required. It comprises of Na2O (sodium oxide) from soda ash, SiO2 (silica sand), MgO (dolomite),CaO (calcium oxide) from limestone/dolomite, and Al2O3 (feldspar). The ingredients get mixed in their right proportions. The entire batch gets flown into a furnace that is heated as much as to 1500 degree Celsius.
Step #2: Float bath
From the furnace, the molten material goes into the float bath comprising of a mirror-like surface created from the molten tin. This material, then, flows into the bath at 1500 degree Celsius. It leaves the bath approximately at 650 degree Celsius. At the exit, its shape looks like a solid ribbon.
Step #3: Coating for reflective glass
If a reflective glass surface which helps in having the indoors cooler, is produced, then the procedures of coating are followed where either a soft or a hard coat gets applied on the ribbon surface which was cooled at high temperatures.
Step #4: Annealing
For removing the internal stresses built up in the glass, a procedure known as annealing is conducted. The procedure helps the glass ribbon to get through a layer that gets rid of any stresses on the surface of the glass, gradually cooling it to create the final hardened form. Because of it, cutting the glass and shaping it accordingly become easier.
Step #5: Inspecting
Through advanced and acute inspection technology, over 100 million inspections may be conducted throughout the glass manufacturing process for identifying stresses, air bubbles, or grains of sand which refuse to melt. It is vital in quality-proofing the finished form of glass.
Step #6: Cutting to order
Diamond steels are used to trim and cut the glass ribbons into square shapes.
Want to see more full solutions like this?
Chapter 18 Solutions
Manufacturing Engineering & Technology
- A cantilevered rectangular prismatic beam has three loads applied. 10,000N in the positive x direction, 500N in the positive z direction and 750 in the negative y direction. You have been tasked with analysing the stresses at three points on the beam, a, b and c. 32mm 60mm 24mm 180mm 15mm 15mm 40mm 750N 16mm 500N x 10,000N Figure 2: Idealisation of the structure and the applied loading (right). Photograph of the new product (left). Picture sourced from amazon.com.au. To assess the design, you will: a) Determine state of stress at all points (a, b and c). These points are located on the exterior surface of the beam. Point a is located along the centreline of the beam, point b is 15mm from the centreline and point c is located on the edge of the beam. When calculating the stresses you must consider the stresses due to bending and transverse shear. Present your results in a table and ensure that your sign convention is clearly shown (and applied consistently!) (3%) b) You have identified…arrow_forward7.82 Water flows from the reservoir on the left to the reservoir on the right at a rate of 16 cfs. The formula for the head losses in the pipes is h₁ = 0.02(L/D)(V²/2g). What elevation in the left reservoir is required to produce this flow? Also carefully sketch the HGL and the EGL for the system. Note: Assume the head-loss formula can be used for the smaller pipe as well as for the larger pipe. Assume α = 1.0 at all locations. Elevation = ? 200 ft 300 ft D₁ = 1.128 ft D2=1.596 ft 12 2012 Problem 7.82 Elevation = 110 ftarrow_forwardHomework#5arrow_forwardA closed-cycle gas turbine unit operating with maximum and minimum temperature of 760oC and 20oC has a pressure ratio of 7/1. Calculate the ideal cycle efficiency and the work ratioarrow_forwardConsider a steam power plant that operates on a simple, ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine The thermal efficiency of the cycle,The mass flow rate of the steam and the temperature rise of the cooling waterarrow_forwardTwo reversible heat engines operate in series between a source at 600°C, and a sink at 30°C. If the engines have equal efficiencies and the first rejects 400 kJ to the second, calculate: the temperature at which heat is supplied to the second engine, The heat taken from the source; and The work done by each engine. Assume each engine operates on the Carnot cyclearrow_forwardA steam turbine operates at steady state with inlet conditions of P1 = 5 bar, T1 = 320°C. Steam leaves the turbine at a pressure of 1 bar. There is no significant heat transfer between the turbine and its surroundings, and kinetic and potential energy changes between inlet and exit are negligible. If the isentropic turbine efficiency is 75%, determine the work developed per unit mass of steam flowing through the turbine, in kJ/kgarrow_forwardYou are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m Ca)Calculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) b) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. c) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…arrow_forwardUsing the three moment theorem, how was A2 determined?arrow_forwardDraw the kinematic diagram of the following mechanismarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY