Operations Management (Comp. Instructor's Edition)
Operations Management (Comp. Instructor's Edition)
13th Edition
ISBN: 9781259948237
Author: Stevenson
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 1P

a)

1)

Summary Introduction

To determine: The system utilization rate.

Introduction: System utilization refers to percentage amount of capacity which is utilized or we can say that actual output is divided by potential output. It is operational metric for business which indicates aggregate productive capacity.

It reflects the ratio of demand to capacity or supply, it is also commonly known as Capacity utilization rate.

a)

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.600.

Explanation of Solution

Given information:

λ=3customer/hours

μ=5customer/hours

M=1

Formula,

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=31×5=0.6000

Therefore, system utilization rate is 0.6000.

1)

Summary Introduction

To determine: The system utilization rate.

Introduction: System utilization refers to percentage amount of capacity which is utilized or we can say that actual output is divided by potential output. It is operational metric for business which indicates aggregate productive capacity.

It reflects the ratio of demand to capacity or supply, it is also commonly known as Capacity utilization rate.

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.600.

Explanation of Solution

Given information:

λ=3customer/hours

μ=5customer/hours

M=1

Formula,

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=31×5=0.6000

Therefore, system utilization rate is 0.6000.

2)

Summary Introduction

To determine: The average number customers waiting for service in line.

2)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers waiting in line (Lq) is 0.9000.

Explanation of Solution

Explanation

Given information:

λ=3customer/hours

μ=5customer/hours

Formula as per single server model of average number customers waiting for service in line

Lq=λ2μ(μλ)

Where,

Lq is denoted by average number customers waiting for service in line

Demand rate (measured as arrival) denoted by λ

Supply rate per server denoted by μ

Calculation of Average number of customers waiting in line (Lq):

Lq=λ2μ(μλ)=325(53)=0.900

Therefore, average number of customers waiting in line (Lq) is 0.9000.

3)

Summary Introduction

To determine: Average number of customers waiting time.

3)

Expert Solution
Check Mark

Answer to Problem 1P

The average number customers waiting time ( Wq ) is 0.3000.

Explanation of Solution

Given information:

λ=3customer/hours

Formula as per single server model of average number customers waiting for service in line:

Wq=Lqλ

Where,

Lq is denoted by average number customers waiting for service in line

Wq is denoted by average number customers waiting time

Demand rate (measured as arrival) denoted by λ

Calculation of Average number of customers waiting in line ( Wq ):

Wq=Lqλ=0.90003=0.3000

Therefore, average number customers waiting time ( Wq ) is 0.3000.

b)

1)

Summary Introduction

To determine: The average number of customer waiting for repairs.

b)

1)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers waiting in line (Lq) is 2.250.

Explanation of Solution

Given information:

λ=3 repair calls/8-hour day

Mean service time: 2 hours

M =1

Calculation of μ

μ=productivehoursmeanservicetime=82=4repaircall/8-hour day

Formula as per single server model of average number customers waiting for service in line:

Lq=λ2μ(μλ)

Where,

Lq is denoted by average number customers waiting for service in line

Demand rate (measured as arrival) denoted by λ

Supply rate per server denoted by μ

Calculation of Average number of customers waiting in line (Lq):

Lq=λ2μ(μλ)=324(43)=2.250

Therefore, Average number of customers waiting in line (Lq) is 2.250.

1)

Summary Introduction

To determine: The average number of customer waiting for repairs.

1)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers waiting in line (Lq) is 2.250.

Explanation of Solution

Given information:

λ=3 repair calls/8-hour day

Mean service time: 2 hours

M =1

Calculation of μ

μ=productivehoursmeanservicetime=82=4repaircall/8-hour day

Formula as per single server model of average number customers waiting for service in line:

Lq=λ2μ(μλ)

Where,

Lq is denoted by average number customers waiting for service in line

Demand rate (measured as arrival) denoted by λ

Supply rate per server denoted by μ

Calculation of Average number of customers waiting in line (Lq):

Lq=λ2μ(μλ)=324(43)=2.250

Therefore, Average number of customers waiting in line (Lq) is 2.250.

2)

Summary Introduction

To determine: The system utilization rate.

Introduction: It reflects the ratio of demand to capacity or supply, it is also commonly known as Capacity utilization rate.

2)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.750.

Explanation of Solution

Given information:

λ=3customer/hours

μ=4 repair calls/8-hour day

M=1

Formula,

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=31×4=0.750

Therefore, system utilization rate is 0.750.

3)

Summary Introduction

To determine: The idle time.

3)

Expert Solution
Check Mark

Answer to Problem 1P

The idle time is 2hours per day.

Explanation of Solution

Calculation of the idle time:

Idletimepercentage=1Systemutilization=10.75=25.00%

Idletimehours=Idletimepercentage ×working hour perday=25%×8hours/day=2hours

Therefore, idle time per day per hours is 2hours per day.

4)

Summary Introduction

To determine: Probability of two or more customers in the system.

4)

Expert Solution
Check Mark

Answer to Problem 1P

The probability of two or more customers in the system is 0.5625.

Explanation of Solution

Step 1: Calculate the probability of less than two:

P<2=1(λμ)=1(34)2=10.5625=0.4375

Therefore, probability of less than two is 0.4375.

Step 2: Calculation probability of two or more than customer in the system:

P2=1P<2=10.4375=0.5625

Therefore, probability of less than two is 0.5625.

c)

1)

Summary Introduction

To determine: The system utilization rate.

c)

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.750.

Explanation of Solution

Given information

λ=18customer/hours

μ=12customer/hours

M=2

Formula:

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=182×12=0.750

Therefore, system utilization rate is 0.7500.

1)

Summary Introduction

To determine: The system utilization rate.

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.750.

Explanation of Solution

Given information

λ=18customer/hours

μ=12customer/hours

M=2

Formula:

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=182×12=0.750

Therefore, system utilization rate is 0.7500.

2)

Summary Introduction

To determine: Average number of customers in the system (Ls).

2)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers in the system (Ls) is 3.429.

Explanation of Solution

Step 1: Calculation of the average number of customer served

r=λμ=1812=1.5

Therefore average number of customer served is 1.5.

Step 2: find the value of Lq

Given information:

λμ = 1.5 and M is 2

Then, from Infinite-source values table we find that value for Lq is 1.929.

For reference:

Operations Management (Comp. Instructor's Edition), Chapter 18, Problem 1P

Step 3Calculation of the average number of customers in the system (Ls)

Ls=Lq+λμ=1.929+1812=1.929+1.5=3.429

Therefore, the average number of customers in the system (Ls) is 3.429.

3)

Summary Introduction

To determine: Average time customers wait in line for service (Wq).

3)

Expert Solution
Check Mark

Answer to Problem 1P

Average time customers wait in line for service (Wq).is 0.107.

Explanation of Solution

Wq=Lqλ=1.92918=0.107

Therefore, the average time customers wait in line for service (Wq).is 0.107.

4)

Summary Introduction

To determine: The average waiting time for an arrival not immediately served (hours) (Wa).

4)

Expert Solution
Check Mark

Answer to Problem 1P

The average waiting time for an arrival not immediately served (hours) (Wa) is 0.167.

Explanation of Solution

Calculation of average waiting time for an arrival not immediately served (hours) (Wa):

Wa=1Mμλ=1(2×12)18=12418=16=0.167

Therefore, average waiting time for an arrival not immediately served (hours) (Wa) is 0.167 hours.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Excel Please. The workload of many areas of banking operations varies considerably based on time of day.  A variable capacity can be achieved effectively by employing part-time personnel.  Because part-timers are not entitled to all the fringe benefits, they are often more economical than full-time employees.  Other considerations, however, may limit the extent to which part-time people can be hired in a given department.  The problem is to find an optimal workforce schedule that would meet personnel requirements at any given time and also be economical.   Some of the factors affecting personnel assignments are listed here:   The bank is open from 9:00am to 7:00pm. Full-time employees work for 8 hours (1 hour for lunch included) per day. They do not necessarily have to start their shift when the bank opens. Part-time employees work for at least 4 hours per day, but less than 8 hours per day and do not get a lunch break. By corporate policy, total part-time personnel hours is limited…
IM.84 An outdoor equipment manufacturer sells a rugged water bottle to complement its product line. They sell this item to a variety of sporting goods stores and other retailers. The manufacturer offers quantity discounts per the following discount schedule: Option Plan Quantity Price A 1 - 2,399 $5.50 B 2,400 - 3,999 $5.20 C 4,000+ $4.50 A large big-box retailer expects to sell 9,700 units this year. This retailer estimates that it incurs an internal administrative cost of $225 each time it places an order with the manufacturer. Holding cost for the retailer is $55 per case per year. (There are 40 units or water bottles per case.) Based on this information, and not taking into account any quantity discount offers, what is the calculated EOQ (in units)? (Display your answer to the nearest whole number.) Number Based on this information, sort each quantity discount plan from left to right by dragging the MOST preferred option plan to the left, and the LEAST preferred…
In less than 150 words, what is an example of what your reflection of core values means to you and your work: Commitment, Perseverance, Community, Service, Pride?
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Practical Management Science
    Operations Management
    ISBN:9781337406659
    Author:WINSTON, Wayne L.
    Publisher:Cengage,
    Text book image
    Marketing
    Marketing
    ISBN:9780357033791
    Author:Pride, William M
    Publisher:South Western Educational Publishing
    Text book image
    MARKETING 2018
    Marketing
    ISBN:9780357033753
    Author:Pride
    Publisher:CENGAGE L
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Text book image
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Text book image
MARKETING 2018
Marketing
ISBN:9780357033753
Author:Pride
Publisher:CENGAGE L