
(a)
Interpretation:
The complete, detailed mechanism of the given reaction in the acidic medium is to be drawn, and major organic product is to be predicted.
Concept introduction:
When an

Answer to Problem 18.56P
The complete, detailed mechanism of the given reaction in the acidic medium is shown below; an acetal is the major product.
Explanation of Solution
The given reaction is
This is an acetal formation reaction in which the reaction is catalyzed by an acid, and the excess
First three steps are that of the acid catalyzed nucleophilic addition reactions on ketone. In the first step, the
Next, the weak nucleophile, diol, attacks the activated electrophilic carbon by nucleophilic addition reaction.
In the next step, deprotonation produces the uncharged hemiacetal.
The remaining steps essentially make up the
The
The resonance stabilized carbocation is further attacked by the diol nucleophile, which produces positively charged acetal. The carbonation step is intramolecular because it forms a five-membered ring, and it is stable.
In the last step, the deprotonation of the charged acetal by alcohol results in the uncharged acetal formation. Acetal is the major product of the given aldehyde.
The complete, detailed mechanism of the given reaction in the acidic medium is shown below; an acetal is the major product.
The complete, detailed mechanism of the given reaction under acidic medium and excess alcohol is drawn.
(b)
The complete, detailed mechanism of the given reaction in the acidic medium is to be drawn, and major organic product is to be predicted.
Concept introduction:
When an aldehyde or ketone is treated with an alcohol under acidic conditions, a hemiacetal product is formed. Use of an excess amount of alcohol under acidic conditions and after that the nucleophilic addition produces hemiacetals, which further form an acetal. The acetal has two alkoxy groups bonded to the same carbon. The formation of the acetal product is favored by using excess alcohol. This type of reactions is carried forward by proton transfer and nucleophilic addition on the carbonyl carbon. An acetal is produced under acidic conditions by a ketone or aldehyde but not under basic conditions because the nucleophilic substitution requires the leaving group to be

Answer to Problem 18.56P
The complete, detailed mechanism of the given reaction in the acidic medium is shown below; an acetal is the major product.
Explanation of Solution
The given reaction is
This is an acetal formation reaction in which the reaction is catalyzed by sulfuric acid, and the excess diols act as the nucleophile.
First three steps are that of the acid catalyzed nucleophilic addition reactions on ketone. In the first step, the
Next, the weak nucleophile, alcohol, attacks the activated electrophilic carbon by nucleophilic addition reaction.
In the next step, deprotonation produces the uncharged hemiacetal.
The remaining steps essentially make up an
The
The resonance stabilized carbocation is further attacked by the diol nucleophile, which produces positively charged acetal. The carbonation step is intramolecular because it forms a five-membered ring, and it is stable.
In the last step, the deprotonation of charged acetal by alcohol results in the uncharged acetal formation. Acetal is the major product of the given aldehyde.
The complete, detailed mechanism of the given reaction in the acidic medium is shown below; an acetal is the major product.
The complete, detailed mechanism of the given reaction under acidic medium and excess alcohol is drawn.
(c)
Interpretation:
The complete, detailed mechanism of the given reaction in the acidic medium is to be drawn, and major organic product is to be predicted.
Concept introduction:
When an aldehyde or ketone is treated with an alcohol under acidic conditions, a hemiacetal product is formed. Use of an excess amount of alcohol under acidic conditions and after that the nucleophilic addition produces hemiacetals, which further form an acetal. The acetal has two alkoxy groups bonded to the same carbon. The formation of the acetal product is favored by using excess alcohol. This type of reactions is carried forward by proton transfer and nucleophilic addition on the carbonyl carbon. An acetal is produced under acidic conditions by a ketone or aldehyde but not under basic conditions because the nucleophilic substitution requires the leaving group to be

Answer to Problem 18.56P
The complete, detailed mechanism of the given reaction in the acidic medium is shown below; an acetal is the major product.
Explanation of Solution
The given reaction is
This is an acetal formation reaction in which the reaction is catalyzed by sulfuric acid, and the excess diol acts as the nucleophile.
First three steps are that of the acid catalyzed nucleophilic addition reactions on the aldehyde. In the first step, the
Next, the weak nucleophile, alcohol, attacks the activated electrophilic carbon by nucleophilic addition reaction.
In the next step, deprotonation produces the uncharged hemiacetal.
The remaining steps essentially make up an
The
The resonance stabilized carbocation is further attacked by the diol nucleophile, which produced positively charged acetal. The carbonation step is intramolecular because it forms a six-membered ring, and it is stable.
In the last step, the deprotonation of the charged acetal by alcohol results in the uncharged acetal formation. Acetal is the major product of the given aldehyde.
The complete, detailed mechanism of the given reaction in the acidic medium is shown below; an acetal is the major product.
The complete, detailed mechanism of the given reaction under acidic medium and excess alcohol is drawn.
Want to see more full solutions like this?
Chapter 18 Solutions
Get Ready for Organic Chemistry
- Assign these C-NMR and H-NMR Spectrumarrow_forwardPredict the product of this organic reaction: IZ + HO i P+H₂O Specifically, in the drawing area below draw the skeletal ("line") structure of P. If there is no reasonable possibility for P, check the No answer box under the drawing area. No Answer Click and drag to start drawing a structure. ☐ :arrow_forwardPredict the products of this organic reaction: 0 O ----- A + KOH ? CH3-CH2-C-O-CH2-C-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. X ⑤ èarrow_forward
- Predict the products of this organic reaction: O CH3 + H2O + HCI A A? CH3-CH2-C-N-CH3 Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. If there's more than one product, draw them in any arrangement you like, so long as they aren't touching. If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No Reaction Click anywhere to draw the first atom of your structure.arrow_forwardWhat is the missing reactant in this organic reaction? R+ HO-C-CH2-CH3 0= CH3 CH3 —CH, C−NH—CH CH3 + H₂O Specifically, in the drawing area below draw the condensed structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. Note for advanced students: you may assume no products other than those shown above are formed. No Answer Click anywhere to draw the first atom of your structure. €arrow_forward个 CHEM&131 9267 - $25 - Intro to Mail - Hutchison, Allison (Student x Aktiv Learnin https://app.aktiv.com Draw the product of the reaction shown below. Ignore inorganic byproducts. + Na2Cr2O7 Acetone, H2SO4 Type here to search Dryng OH W Prarrow_forward
- Predict the products of this organic reaction: OH + NaOH A? Specifically, in the drawing area below draw the skeletal ("line") structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click and drag to start drawing a structure. ✓ Sarrow_forwardPredict the products of this organic reaction: CH3-C-O-CH2-CH2-C-CH3 + H₂O ? A Specifically, in the drawing area below draw the condensed structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No reaction Click anywhere to draw the first atom of your structure. :☐ darrow_forwardDE d. Draw an arrow pushing mechanism for the following IN O CI N fo 人 P Polle DELL prt sc home end ins F5 F6 F7 F8 F9 F10 F11 F12arrow_forward
- Predict the products of this organic reaction: + H₂O H* ? A Specifically, in the drawing area below draw the skeletal ("line") structure of the product, or products, of this reaction. (If there's more than one product, draw them in any arrangement you like, so long as they aren't touching.) If there aren't any products because this reaction won't happen, check the No reaction box under the drawing area. No Reaction Click and drag to start drawing a structure.arrow_forwardPredict the major organic products of the reaction below and draw them on right side of the arrow. If there will be no significant reaction, check the box below the drawing area instead. C Cl CH, OH There will be no significant reaction. + pyridine G Click and drag to start drawing a structure.arrow_forwardWhat is the missing reactant in this organic reaction? H R+ H2O Δ OH 0= CH3-CH-O-CH3 + CH3-C-OH Specifically, in the drawing area below draw the condensed structure of R. If there is more than one reasonable answer, you can draw any one of them. If there is no reasonable answer, check the No answer box under the drawing area. No Answer Click anywhere to draw the first atom of your structure. dyarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





