Concept explainers
Find the consolidation settlement of the group.
Answer to Problem 18.25P
The consolidation settlement of the group is
Explanation of Solution
Given information:
The total load
The length
The length
The length
The unit weight
The saturated unit weight
The initial void ratio
The coefficient of consolidation
The saturated unit weight
The initial void ratio
The coefficient of consolidation
The saturated unit weight
The initial void ratio
The coefficient of consolidation
The saturated unit weight
The initial void ratio
The coefficient of consolidation
Calculation:
Show the pressure diagram as in Figure 1.
Determine the total length L of pile using the formula.
Substitute 3 m for
The load starts transmitting to the soil at the pile depth of
Determine the depth at which the load on the group pile
Here, L is the depth of normally consolidated clay layer 1.
Substitute 10 m for L.
Thus, the settlement starts in NCC layer 1.
Determine the stress
Here,
Take the unit weight of water as
Substitute
Determine the stress
Here,
Substitute
Determine the stress
Here,
Substitute
Calculate the stress
Here,
Substitute 2,500 kN for
Calculate the stress
Substitute 2,500 kN for
Calculate the stress
Substitute 2,500 kN for
Determine the value of
Substitute
Determine the value of
Substitute
Determine the value of
Substitute
Determine the consolidated settlement
Here,
Substitute 0.30 for
Determine the consolidated settlement
Here,
Substitute 0.35 for
Determine the consolidated settlement
Here,
Substitute 0.26 for
Determine the total
Substitute 0.186 m for
Therefore, the consolidated settlement of the group pile is
Want to see more full solutions like this?
Chapter 18 Solutions
EBK FUNDAMENTALS OF GEOTECHNICAL ENGINE
- K Course Code CE181303 Course Title Hours per week L-T-P Credit C Fluid Mechanics 3-1-0 MODULE 1: Fluid Properties: Fluid-definition, types; physical properties of fluid-density, specific weight, specific volume, specific gravity, viscosity- Newton's law of viscosity, surface tension, compressibility of fluids, capillarity. MODULE 2: Fluid Statics: Hydrostatic pressure, pressure height relationship, absolute and gauge pressure, measurement of pressure-manometer, pressure on submerged plane and curved surfaces, centre of pressure; buoyancy, equilibrium of floating bodies, metacentre; fluid mass subjected to accelerations. MODULE 3: Fluid Kinematics: Types of motion- steady and unsteady flow, uniform and no uniform flow, laminar and turbulent flow, and path lines, stream tube, stream function compressible and incompressible flow, one, two & three dimensional flow; stream lines, streak lines and velocity potential, flow net and its drawing: free and forced vortex. MODITE Q. A closed…arrow_forwardH.W: For the tank shown in figure below, Find The amount of salt in the tank at any time. Ans: x = 2(100+t) 1500000 (100 + t)² Qin = 3 L/min Cin = 2 N/L V = 100 L Xo=50N Qout = 2 L/min Cout? 33arrow_forward- Find reactions and draw Shear and Bending Moment Diagram. 30 N 15 N/m D B A 2 m 1 m 2 mmarrow_forward
- : A 5ms- long current pulse is desired for two linear lamps connected in series and pumped at a total energy input of (1KJ). Each of lamps has an arc-length of (10cm) and a bore of (1cm). If we assume a peak current of (i, -650A). Design a multiple mesh network including number of LC sections, inductance and capacitance per section and capacitor voltage. Laser designarrow_forwardWhat would be the best way to handle when a contractor misses a concrete pour deadline which causes delays for other contractors?arrow_forwardPlease solve manuallyarrow_forward
- . The free fall distance was 1753 mm. The times for the release and catch recorded on the fall experiments were in millisecond: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Calculate the time taken for the fall for each experiment. Calculate for each fall the acceleration based on time and distance. Calculate the mean of the accelerations. Give in the answer window the calculated mean of accelerations in m/s2.arrow_forwardneed help. explain plzarrow_forward-Design the traffic signal intersection using all red 2 second, for all phase the truck percent 5% for all movement, and PHF -0.95 Check for capacity only Approach Through volume Right volume Left volume Lane width Number of lane Veh/hr Veh/hr Veh/hr m North 700 100 150 3.0 3 south 600 75 160 3.0 3 East 300 80 50 4.0 R west 400 50 55 4.0 2arrow_forward
- need helparrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning